CLASIFICADO

ALCALDÍA MAYOR DE BOGOTÁ D.C. GOBIERNO SEGURIDAD Y CONVIVENCIA Fondo de Prevención y Atención a Emergencias DIRECCIÓN DE PREVENCIÓN Y ATENCIÓN DE EMERGENCIAS

PROCESAMIENTO E INTERPRETACIÓN DE SEÑALES DE LA RED DE ACELERÓGRAFOS DE BOGOTÁ - RAB

INFORME FINAL VOLUMEN 1. ORIGINAL

SUBDIRECCIÓN DE INVESTIGACIÓN Y DESARROLLO

COORDINACIÓN DE ESTUDIOS TÉCNICOS

NOVIEMBRE DE 2008

Diagonal 47 No. 77A -09 Interior 11 - Conmutador: 4292801 Fax. 4292833 - Bogotá D.C. - Colombia Página Web: <u>www.fopae.gov.co</u> y <u>www.sire.gov.co</u> mail: <u>fopae@fopae.gov.co</u>

Nota especial: De acuerdo con el articulo 20 de la ley 23 de 1982, los derechos de autor pertenecen al FOPAE, la solicitud de reproducir éste documento parcial o totalmente, se debe dirigir por escrito al Director del FOPAE.

CLASIFICADO

ALCALDIA MAYOR DE BOGOTÁ D.C. GOBIERNO SEGURIDAD Y CONVIVENCIA Fondo de Prevención y Atención a Emergencias DIRECCIÓN DE PREVENCIÓN Y ATENCIÓN DE EMERGENCIAS

DIRECCIÓN DE PREVENCIÓN Y ATENCIÓN DE EMERGENCIAS

GUILLERMO ESCOBAR CASTRO Director

GERMÁN BARRETO ARCINIEGAS Subdirector de Investigación y Desarrollo

> DULFAY PATRICIA ORTIZ Coordinadora Estudios Técnicos

Interpretación y análisis de registros FERNANDO JAVIER DÍAZ PARRA

Operación y mantenimiento de la RAB JUAN CARLOS PADILLA DORIAN MEZA

Base de datos, catálogos y fichas GERARDO RODRÍGUEZ

GOBIERNO DE LA CIUDAD

Diagonal 47 No. 77A -09 Interior 11 - Conmutador: 4292801 Fax. 4292833 - Bogotá D.C. - Colombia Página Web: <u>www.fopae.gov.co</u> y <u>www.sire.gov.co</u> mail: <u>fopae@fopae.gov.co</u>

Nota especial: De acuerdo con el articulo 20 de la ley 23 de 1982, los derechos de autor pertenecen al FOPAE, la solicitud de reproducir éste documento parcial o totalmente, se debe dirigir por escrito al Director del FOPAE.

CLASIFICADO

DE BOGOTÁ D.C. <u>GOBIERNO SEGURIDAD Y CONVIVENCIA</u> Fondo de Prevención y Atención a Emergencias DIRECCIÓN DE PREVENCIÓN Y ATENCIÓN DE EMERGENCIAS

RESUMEN

El presente estudio recopila y analiza la información obtenida a través del monitoreo sísmico que se realiza mediante la Red de Acelerógrafos de Bogotá - RAB desde el año 1999 hasta junio de 2008, el cual comprende la descripción actual del funcionamiento de la RAB, el inventario, procesamiento, interpretación y análisis de los eventos registrados. Este estudio brinda criterios adicionales para la modelación de la respuesta sísmica de los depósitos y la zonificación de efectos locales de la ciudad, además de recomendaciones importantes para el proyecto de actualización de la microzonificación sísmica de Bogotá.

GOBIERNO DE LA CIUDAD

Diagonal 47 No. 77A -09 Interior 11 - Conmutador: 4292801 Fax. 4292833 - Bogotá D.C. - Colombia Página Web: <u>www.fopae.gov.co</u> y <u>www.sire.gov.co</u> mail: <u>fopae@fopae.qov.co</u>

Nota especial: De acuerdo con el articulo 20 de la ley 23 de 1982, los derechos de autor pertenecen al FOPAE, la solicitud de reproducir éste documento parcial o totalmente, se debe dirigir por escrito al Director del FOPAE.

CONTENIDO

<u>1</u>	NTRODUCCIÓN	1
1.1	ANTECEDENTES	1
1.2	OBJETIVO	2
1.3	ALCANCE	3
1.4	METODOLOGÍA	3
<u>2</u>	RED DE ACELERÓGRAFOS DE BOGOTÁ – RAB	5
2.1	DESCRIPCIÓN DE LA RED	5
2.2	CARACTERÍSTICAS DE LAS ESTACIONES	7
2.3	EVENTOS REGISTRADOS	8
<u>3</u>	PROCESAMIENTO Y PUBLICACIÓN DE REGISTROS DE LA RAB	10
3.1	PROCESAMIENTO DE REGISTROS	10
3.2	CATÁLOGO DE EVENTOS Y FICHAS HISTÓRICA DE REGISTROS	11
3.3	PUBLICACIÓN DE LOS REGISTROS EN EL SIRE	13
<u>4</u>	NTERPRETACIÓN DE REGISTROS	15
4.1	ANÁLISIS DE LA RESPUESTA SÍSMICA EN CADA ESTACIÓN	16
4.1.1	Zona de Cerros	19
4.1.2	Zona de Piedemonte	22
4.1.3	ZONA LACUSTRE	24
4.1.4		29
4.1.5	REGISTROS EN PROFUNDIDAD Y RELACIONES ESPECTRALES	31
4.Z	ANALISIS DE SISMUS DESTACADUS	35 25
4.2.1	EVENTO DE DIA O DE NOVIEMBRE DE 1999 DE I DEIA JANTANDER Evento de día 24 de mayo de 2008 Olietame Clindinamadoa	35 36
4.3	SÍNTESIS DE RESULTADOS	47
5 I	ESTIMACIÓN DE PROPIEDADES DINÁMICAS Y CALIBRACIÓN DE MODELOS DE RESPUESTA EN LOS	SITIOS
CON	DOWN HOLE	48
5.1	PROPIEDADES DINÁMICAS	48
5.1.1	VELOCIDAD DE ONDA CORTANTE	48
5.1.2	AMORTIGUAMIENTO VISCOSO O MÍNIMO	53
5.2	MODELOS DE DEGRADACION DEL MODULO Y AMORTIGUAMIENTO RECOMENDADOS	55
5.2.1	ZHANG ET AL. (2005)	56
5.2.2		57
១.វ ភ្រុា	UALIDRAGION DE LOS MODELOS DE RESPUESTA EN LOS SITIOS CON DOWN HOLE	50
5.3.2	INGEOMINAS – CBOG1	59 61
	PROCESAMIENTO E INTERPRETACIÓN DE SEÑALES DE LA RED DE ACELERÓGRAFOS DE ROGOTÁ – RAB	i

BODG POSITIVA GOBIERNO DE LA CIUDAD

 5.3.3 ESCUELA GENERAL SANTANDER – CGRAL 5.3.4 SÍNTESIS DE RESULTADOS 5.4 ESPECTROS DE RESPUESTA DE LAS SEÑALES DE DISEÑO EN LOS SITIOS CALIBRADOS 	63 65 65
6 CONCLUSIONES Y RECOMENDACIONES	70
6.1 CONCLUSIONES	70
6.2 RECOMENDACIONES	71
6.2.1 GENERALES	71
6.2.2 SEÑALES DE DISEÑO Y ESPECTROS DE DISEÑO	71
6.2.3 ZONA DE CERROS	71
6.2.4 ZONA DE PIEDEMONTE	72
6.2.5 ZONA LACUSTRE	72
6.2.6 ZONAS ALUVIALES	72
7 BIBLIOGRAFÍA	73

LISTA DE FIGURAS

Figura 1. Localización de estaciones de la RAB	6
Figura 2. Esquema de sistema telemétrico de la RAB	7
Figura 3. Número de estaciones que registraron cada evento sísmico	9
Figura 4. Ejemplo de catálogo de eventos registrados de la RAB	12
Figura 5. Registro histórico de eventos de la estación CEING	13
Figura 6. Página web de la RAB en el SIRE	14
Figura 7. Página web de los eventos registrados por la RAB en el SIRE	14
Figura 8. Localización de estaciones de la RAB en el mapa de MSB-97	17
Figura 9. Localización de estaciones de la RAB en el mapa de AMSB-08	18
Figura 10. Espectros de respuesta y respuestas normalizadas CPSUB	19
Figura 11. Espectros de respuesta y respuestas normalizadas CTVCA	20
Figura 12. Espectros de respuesta y respuestas normalizadas CESCA	20
Figura 13. Espectros de respuesta y respuestas normalizadas CUNMA	20
Figura 14. Espectros de respuesta y respuestas normalizadas CBART	21
Figura 15. Espectros de respuesta y respuestas normalizadas CVITE	21
Figura 16. Espectros de respuesta y respuestas normalizadas CSMOR	21
Figura 17. Espectros de respuesta y respuestas normalizadas CUSAL	22
Figura 18. Espectros de respuesta y respuestas normalizadas CUSAQ	22
Figura 19. Espectros de respuesta y respuestas normalizadas CDIOS	23
Figura 20. Espectros de respuesta y respuestas normalizadas CARTI	23
Figura 21. Espectros de respuesta y respuestas normalizadas CMARI	23
Figura 22. Espectros de respuesta y respuestas normalizadas CUAGR Superficie	24
Figura 23. Espectros de respuesta y respuestas normalizadas CEING	24
Figura 24. Espectros de respuesta y respuestas normalizadas CBANC	25

BOOG BOSITIVA GOBIERNO DE LA CIUDAD

Figura 25.	Espectros de respuesta y respuestas normalizadas CCORP
Figura 26.	Espectros de respuesta y respuestas normalizadas CLAGO25
Figura 27.	Espectros de respuesta y respuestas normalizadas CBOG1 Superficie
Figura 28.	Espectros de respuesta y respuestas normalizadas CNIÑO
Figura 29.	Espectros de respuesta y respuestas normalizadas CJABO
Figura 30.	Espectros de respuesta y respuestas normalizadas CAVIA
Figura 31.	Espectros de respuesta y respuestas normalizadas CFONT
Figura 32.	Espectros de respuesta y respuestas normalizadas CTIEM
Figura 33.	Espectros de respuesta y respuestas normalizadas CFLOD
Figura 34.	Espectros de respuesta y respuestas normalizadas CGRAL Superficie
Figura 35.	Espectros de respuesta y respuesta normalizado CTUNA
Figura 36.	Espectros de respuesta y respuestas normalizadas CTEJE
Figura 37.	Espectros de respuesta y respuestas normalizadas CTIMI
Figura 38.	Espectros de respuesta y respuestas normalizadas CBOSA
Figura 39.	Espectros de respuesta y respuestas normalizadas CCITE
Figura 40.	Espectros de respuesta y respuestas normalizadas CCKEN
Figura 41.	Espectros de respuesta y respuestas normalizadas CUAGR Down Hole
Figura 42.	Relaciones espectrales CUAGR
Figura 43.	Espectros de respuesta y respuestas normalizadas CBOG1 Down Hole
Figura 44.	Relaciones espectrales CBOG1
Figura 45.	Espectros de respuesta y respuestas normalizadas CGRAL Down Hole
Figura 46.	Relaciones espectrales CGRAL
Figura 47.	Aceleraciones máximas registradas en superficie por evento sísmico
Figura 48.	Distribución de aceleraciones máximas registradas sismo de Betulia 08/11/1999
Figura 49.	Localización del epicentro y replicas del sismo de Quetame (Ingeominas, 2008)
Figura 50.	Distribución de aceleraciones máximas registradas sismo de Quetame 24/05/200840
Figura 51.	Distribución de la duración de la fase intensa del sismo de Quetame 24/05/200841
	PROCESAMIENTO E INTERPRETACIÓN DE SEÑALES DE LA RED DE ACELERÓGRAFOS DE BOGOTÁ – RAB

PROCESAMIENTO E INTERPRETACIÓN DE SEÑALES DE LA RED DE ACELERÓGRAFOS DE BOGOTÁ – RAB. COORDINACIÓN DE ESTUDIOS TÉCNICOS

BOOG BOSITIVA GOBIERNO DE LA CIUDAD

Figura 52.	Espectros de respuesta de roca en Down Hole y Superficie	42
Figura 53.	Espectros de respuesta y relaciones espectrales calculadas para la zona cerros	43
Figura 54.	Espectros de respuesta y relaciones espectrales calculadas para la zona piedemonte	43
Figura 55.	Espectros de respuesta y relaciones espectrales calculadas para la zona lacustre	43
Figura 56.	Espectros de respuesta y relaciones espectrales calculadas para la zona aluvial	44
Figura 57.	Correlación estimada entre espesor del deposito y periodo natural zona Lacustre y Aluvial	45
Figura 58.	Distribución del periodo natural del depósito a partir del sismo de Quetame 24/05/2008	46
Figura 59.	Acelerograma en profundidad y superficie CUAGR	49
Figura 60.	Acelerograma en profundidad y superficie CGRAL	49
Figura 61.	Acelerograma en profundidad y superficie CBOG1	50
Figura 62.	Relación entre el espesor del depósito y la velocidad de onda cortante promedio	51
Figura 63.	Modelo de perfil de velocidad de onda de corte estación CBOG1	53
Figura 64.	Acelerograma en superficie para estimar amortiguamiento CUAGR	54
Figura 65.	Acelerograma en superficie para estimar amortiguamiento CGRAL	54
Figura 66.	Acelerograma en superficie para estimar amortiguamiento CBOG1	55
Figura 67.	Variación de las propiedades dinámicas adoptadas en CUAGR	59
Figura 68.	Espectro de respuesta y relaciones espectrales medidas y modeladas en CUAGR	60
Figura 69.	Variación de las propiedades dinámicas adoptadas en CBOG1	61
Figura 70.	Espectro de respuesta y relaciones espectrales medidas y modeladas en CBOG1	62
Figura 71.	Variación de las propiedades dinámicas adoptadas en CGRAL	63
Figura 72.	Espectro de respuesta y relaciones espectrales medidas y modeladas en CGRAL	64
Figura 73.	Espectro de respuesta de señales de diseño modeladas	65
Figura 74.	Espectro de respuesta y relaciones espectrales de señales de diseño en CUAGR	66
Figura 75.	Espectro de respuesta y relaciones espectrales de señales de diseño en CBOG1	67
Figura 76.	Espectro de respuesta y relaciones espectrales de señales de diseño en CGRAL	68

LISTA DE TABLAS

Tabla 1. Actividades y productos obtenidos en el estudio	4
Tabla 2. Descripción de las estaciones de acelerógrafos	7
Tabla 3. Eventos registrados por la RAB	8
Tabla 4. Numeración de registros procesados de cada estación	11
Tabla 5. Eventos registrados en la estación CBOG1 de Ingeominas	15
Tabla 6. Clasificación de estaciones de acuerdo con las zonas geológicas y de respuesta sísmica	16
Tabla 7. Estaciones con Down Hole	31
Tabla 8. Valores de aceleración máxima registrada sismo de Betulia 08/11/1999	36
Tabla 9. Parámetros sísmicos de los registros del sismo de Quetame en Bogotá, componente SH	
Tabla 10. Periodo natural del depósito a partir de las relaciones espectrales obtenidas del sismo de Quetame	45
Tabla 11. Valores estimados de la velocidad de onda promedio del depósito hasta la roca	50
Tabla 12. Valores estimados de a y b para los tipos de suelos generales	52
Tabla 13. Valores estimados de Vs _{ref} y b para los tipos de suelos generales	52
Tabla 14. Velocidad de onda promedio del perfil CBOG1 estimada por diferentes métodos	52
Tabla 15. Valores estimados de amortiguamiento mínimo	55
Tabla 16. Resumen de parámetros recomendados para material lacustre	58
Tabla 17. Resumen de parámetros recomendados para material aluvial	58
Tabla 18. Perfil geotécnico analizado en CUAGR	59
Tabla 19. Perfil geotécnico analizado en CBOG1	61
Tabla 20. Perfil geotécnico analizado en CGRAL	63

CAPITULO 1

1 INTRODUCCIÓN

La ciudad de Bogotá está localizada en un ambiente sismotectónico que demuestra desde el punto de vista geológico, actividad sísmica reciente; por otra parte, según los datos históricos, en los últimos quinientos años la sismicidad en Bogotá y su área cercana ha sido importante. En la capital, tres sismos han causado destrucción parcial de la ciudad (1785, 1827, 1917) alcanzando intensidades de VIII, y cuatro han causado daños serios (1743, 1826, 1923, 1967) con intensidad VII.

Con conocimiento de este hecho, Bogotá viene adelantando desde hace varios años diversas actividades en torno a la gestión integral del riesgo sísmico del área urbana de la ciudad, es así como a partir de la recomendación hecha en el Estudio de Microzonificación Sísmica de Bogotá en el año 1997 y teniendo en cuenta las dificultades en la evaluación del comportamiento de las rocas y suelos de la ciudad frente a las ondas sísmicas por la falta de información, el Fondo de Prevención y Atención a Emergencias - FOPAE a través de la Dirección de Prevención y Atención Emergencias - DPAE inició los trámites correspondientes para la implementación de la Red de Acelerógrafos de Bogotá - RAB.

De este modo, la Red de Acelerógrafos de Bogotá – RAB fue instalada a partir de un Convenio Interadministrativo suscrito en 1997 entre el Fondo de Prevención y Atención de Emergencias – FOPAE y el Instituto Colombiano de Geología y Minería - INGEOMINAS. Dentro del convenio se adquirieron e instalaron un total de 30 acelerógrafos digitales marca KINEMETRICS, los cuales fueron distribuidos en toda el área urbana de la ciudad para conformar así la Red de Acelerógrafos de Bogotá. Posteriormente, en Convenio Interadministrativo suscrito en 2002 entre el FOPAE y la Universidad de los Andes se realizó el procesamiento e interpretación de los registros obtenidos por la RAB desde el año 1999 hasta el año 2001. En el mes de diciembre del año 2003 se suscribió entre el FOPAE y el INGEOMINAS un Convenio Interadministrativo con el fin de implementar el sistema telemétrico para la RAB, el cual facilitaría las labores de operación y mantenimiento de las estaciones.

A partir de los datos que registran los acelerógrafos se puede estudiar lo ocurrido después de un evento sísmico bajo dos enfoques: uno es la variación en superficie de las aceleraciones máximas registradas (mapa de isoaceleraciones), el cual es muy útil para zonificar respuesta sísmica de la ciudad; por otro lado, los registros nos sirven para estudiar el comportamiento dinámico de los suelos de la ciudad, esto permite calibrar en alguna medida los modelos de respuesta. Todo lo anterior es aplicado a la actualización de la microzonificación sísmica de la ciudad de cara a mejorar las normas de sismo-resistencia de las edificaciones, además los análisis de los registros pueden mostrar la distribución de la respuesta sísmica. Lo anterior, sumado al análisis del comportamiento de las edificaciones y sus afectaciones, podrá ser útil para mejorar las hipótesis y modelos que se emplean en los escenarios de daño por terremoto.

Finalmente, el presente estudio recopila y analiza la información obtenida a través de mediante el monitoreo sísmico que se realiza mediante la Red de Acelerógrafos de Bogotá - RAB desde el año 1999 hasta junio de 2008, el cual comprende la descripción actual del funcionamiento de la RAB, el inventario, procesamiento, interpretación y análisis de los eventos registrados. Con este estudio se pretende brindar recomendaciones para la actualización de la microzonificación sísmica de la ciudad, para mejorar los criterios empleados en cuanto a la zonificación de efectos locales, comportamiento dinámico y respuesta espectral de los depósitos de la ciudad.

1.1 ANTECEDENTES

Dado que la ciudad de Bogotá se encuentra en un ambiente sismotectónico que demuestra desde el punto de vista geológico, actividad sísmica reciente, en septiembre de 1992 La Oficina para la Prevención y Atención de Emergencias - OPES hoy DPAE, presentó al Concejo Distrital el Plan Integral de Prevención y Atención de Desastres de Bogotá, en el cual

se incluyó la realización del "Estudio de la Respuesta Sísmica del Subsuelo de Santafé de Bogotá y de los efectos de un terremoto sobre la Ciudad". Dicho Plan fue aprobado como parte integrante del Plan General de Desarrollo de la ciudad, mediante el Acuerdo 31 de 1992.

Posteriormente, en diciembre de 1993 se firmó un Convenio para el desarrollo del proyecto "Microzonificación Sísmica de Santafé de Bogotá", entre la Oficina para la Prevención y atención de Emergencias de Bogotá - OPES, como la entidad distrital responsable de la ejecución del Proyecto, la Dirección Nacional para la Prevención y Atención de Desastres, como la entidad nacional cabeza del Sistema Nacional para la Prevención y Atención de Desastres con el INGEOMINAS y la Universidad de Los Andes, como Instituciones directoras de las actividades técnicas previstas.

El estudio de Microzonificación Sísmica consideró entre otros, el estudio de los efectos de un terremoto sobre la ciudad y de la respuesta sísmica del subsuelo de la misma, definiendo así parámetros de diseño estructural para las zonas definidas en el estudio. De acuerdo con el modelo utilizado para evaluar la aceleración horizontal máxima probable sobre la cuenca rocosa de Bogotá, se obtuvo un valor igual a 0.19 g que para efectos de análisis posteriores se tomó como 0.20 g, tal como se encontró en el estudio general de amenaza sísmica de Colombia, donde se ubica a Bogotá en zona de amenaza sísmica intermedia.

El estudio concluye y recomienda que "Los datos disponibles hasta el momento referentes a acelerógramas de eventos sísmicos registrados en estaciones ubicadas en los suelos blandos de Santafé de Bogotá resultan vitales para adelantar los estudios de microzonificación sísmica de la ciudad pero son aún insuficientes para poder proponer modelos de comportamiento general. Se requiere en general mucha más instrumentación especialmente en la zona de suelos blandos para lograr captar las señales de sismos que ocurran en el futuro. Esta instrumentación debe hacerse mediante acelerógrafos distribuidos en toda la ciudad, con el fin de calibrar el modelo propuesto por este proyecto. Los datos que se obtengan serán de vital importancia para poder evaluar el estado del arte de este tema".

A partir de la recomendación hecha en el Estudio de Microzonificación Sísmica, y teniendo en cuenta las dificultades en la evaluación de la amenaza sísmica regional por falta de información respecto al comportamiento de las rocas y suelos de la ciudad frente a las ondas sísmicas y su atenuación a través del material sedimentario, el FOPAE a través de la DPAE inició los trámites correspondientes para la implementación de la Red de Acelerógrafos de Bogotá - RAB.

La Red de Acelerógrafos de Bogotá fue instalada a partir de un Convenio Interadministrativo suscrito en junio de 1997 entre el Fondo de Prevención y Atención de Emergencias – FOPAE, y el INGEOMINAS. Dentro del convenio se adquirieron e instalaron un total de 30 acelerógrafos digitales marca KINEMETRICS, los cuales fueron distribuidos en toda el área urbana de la ciudad para conformar así la Red de Acelerógrafos de Bogotá; de estos aparatos, 28 son modelo ETNA y los 2 restantes son modelo K2.

Posteriormente, en Convenio Interadministrativo suscrito en 2002 entre el FOPAE y la Universidad de los Andes se realizó el procesamiento e interpretación de los registros obtenidos por la RAB desde el año 1999 hasta el año 2001.

Finalmente, en diciembre del año 2003 se suscribió entre el FOPAE y el INGEOMINAS un Convenio Interadministrativo con el fin de implementar el sistema telemétrico para la RAB, el cual facilitaría las labores de operación y mantenimiento de las estaciones.

Actualmente la Subdirección de Investigación y Desarrollo de la Dirección de Prevención y Atención de Emergencias -DPAE, tiene a cargo adelantar diferentes estudios para actualizar la microzonificación sísmica de la ciudad y el escenario de daños por terremoto, por lo cual el desarrollo de este estudio es importante para orientar el desarrollo de los anteriores proyectos.

1.2 OBJETIVO

• Realizar el procesamiento e interpretación de los registros de eventos sísmicos obtenidos en la Red de Acelerógrafos de Bogotá - RAB durante el periodo comprendido entre el año 2002 y el primer semestre de 2008.

• Presentar recomendaciones para la actualización de la microzonificación sísmica, especialmente para calibrar los modelos de comportamiento dinámico y zonas de respuesta sísmica.

1.3 ALCANCE

Dado el volumen de información la interpretación detallada de registros se realizará únicamente para los eventos sísmicos de mayor magnitud y con un mejor cubrimiento en la ciudad. Las investigaciones detalladas por técnicas diferentes a la referida en la metodología esta fuera del alcance del estudio, sin embargo el propósito de publicar libremente los registros en la página (www.sire.gov.co), busca incentivar la participación de las comunidades científicas en la interpretación de las señales.

1.4 METODOLOGÍA

Para concebir los objetivos propuestos se realizaron las siguientes actividades:

Organización de la información: comprendió realizar el inventario de eventos sísmicos registrados y la enumeración de archivos de acuerdo con la base de datos de registros.

Procesamiento de señales: debido a que los archivos digitales que se obtienen de las estaciones están en formato EVT, es necesario procesarlos mediante el uso de aplicaciones específicas para obtener las señales en archivos planos para posteriormente ser filtradas y corregidas por línea base las señales (archivos con extensión ACE).

Cálculo de parámetros sísmicos: una vez se cuenta con los archivos procesados (*.ACE) se procede a calcular sus parámetros sísmicos, historia y espectros de respuesta de aceleración, velocidad y desplazamiento.

Interpretación de registros: a partir de los registros de mayor magnitud se procede a analizar detalladamente el comportamiento dinámico de los depósitos donde se localiza cada estación, con el fin de observar las formas espectrales, periodos de vibración, duración y aceleraciones máximas.

Estimación de propiedades dinámicas y calibración de modelos de respuesta: con base en los registros de las estaciones que cuentan con registro en profundidad (Down Hole) se calculan las propiedades dinámicas promedio del depósito. A partir de las señales medidas en profundidad y superficie se procede a realizar modelaciones unidimensionales de la respuesta de sitio con el fin de calibrar los modelos de respuesta y recalcular las propiedades dinámicas (retro análisis).

Análisis de resultados y recomendaciones: con base en los resultados de las actividades anteriores se presentan recomendaciones para la actualización de la microzonificación sísmica de la ciudad y en general para estudios de efectos locales que se adelanten en la ciudad.

En la **Tabla 1** en la que se ilustra de manera resumida la metodología desarrollada para el procesamiento e interpretación de las señales, donde se distinguen las actividades realizadas junto con los principales productos parciales y finales obtenidos.

Actividad	Producto
1. Organización de registros	Archivos enumerados EVT.
2. Procesamiento de Señales	Archivos corregidos por línea base y filtrados ACE.
3. Cálculo de parámetros sísmicos	Catálogo de registros en Excel, el cual tiene:
	Parámetros sísmicos del evento en la estación.
	Historia de aceleración, velocidad y desplazamiento.
	Espectros de aceleración, velocidad y desplazamiento.
	Espectro de amplitudes de Fourier.
 Interpretación de registros 	Análisis de formas espectrales y relaciones espectrales.
	Variación espacial de periodos dominantes del suelo, aceleraciones
	máximas y duración de la fase intensa.
5. Estimación de propiedades dinámicas y	Propiedades dinámicas promedio en las estaciones con Down Hole.
calibración de modelos de respuesta	Modelos de respuesta calibrados con base en las propiedades
	dinámicas promedio y los espectros de respuesta de los eventos
	registrados en las estaciones con Down Hole.
6. Análisis de resultados y recomendaciones	Recomendaciones para la actualización de la microzonificación sísmica
	y estudios particulares de respuesta sísmica que se realicen en la
	ciudad.

Tabla 1. Actividades y productos obtenidos en el estudio

CAPITULO 2

2 RED DE ACELERÓGRAFOS DE BOGOTÁ – RAB

La Alcaldía Mayor de Bogotá D.C. a través de la Secretaría de Gobierno y por medio de la Dirección de Prevención y Atención de Emergencias, como coordinadora del Sistema de Prevención y Atención de Emergencias, adelanta planes de gestión del riesgo sísmico en la ciudad capital. Dentro de dichos planes y con el fin de mejorar el conocimiento de la amenaza sísmica a la que está expuesta la ciudad se implantó la Red de Acelerógrafos de Bogotá - RAB.

La función principal de la RAB es registrar la historia de aceleraciones producidas en el terreno cuando se presentan sismos fuertes, es decir sismos de gran magnitud, estos registros nos brindan información acerca del comportamiento dinámico del subsuelo de la ciudad, con el fin de mejorar el conocimiento de la amenaza sísmica para la ciudad y avanzar en los procesos de actualización de la normatividad existente.

2.1 DESCRIPCIÓN DE LA RED

La RAB fue instalada a partir de un Convenio Interadministrativo suscrito en 1997 entre el Fondo de Prevención y Atención de Emergencias – FOPAE, y el Instituto Colombiano de Geología y Minería – INGEOMINAS. Dentro del convenio se adquirieron e instalaron un total de 30 acelerógrafos digitales marca KINEMETRICS, los cuales fueron distribuidos en toda el área urbana de la ciudad para conformar así la Red de Acelerógrafos de Bogotá; de estos aparatos, 28 son modelo ETNA y los 2 restantes son modelo K2, la diferencia entre estos equipos está en que los K2 tienen dos sensores, uno en superficie y otro a la profundidad de la roca (Down Hole) en cambio el tipo ETNA únicamente tiene un sensor en superficie. Estos equipos fueron instalados entre julio de 1998 y junio de 2000, La distribución de las estaciones puede verse en la **Figura 1**.

Posteriormente en el año 2003 se suscribió un convenio especial de cooperación entre el FOPAE y el INGEOMINAS, con el fin de implementar la transmisión de datos por telemetría entre las estaciones y las estaciones maestras localizadas en las instalaciones de INGEOMINAS y el FOPAE. Con la implementación de este sistema se logró poder contar con información registrada en los acelerógrafos, verificar la condición de funcionamiento de los aparatos, tal como carencia de fluido eléctrico, configuración del equipo y calibración de los parámetros de respuesta de las estaciones, todo de manera remota. Por otra parte, se desarrolló en este mismo convenio un software que permite comunicarse con las estaciones y realiza un procesamiento de la señal para obtener algunos parámetros básicos de las señales. En la **Figura 2** se ilustra de manera esquemática el funcionamiento del sistema telemétrico de la RAB.

Actualmente la Dirección de Prevención y Atención de Emergencias de Bogotá-DPAE realiza la operación y mantenimiento de la Red de Acelerógrafos de Bogotá.

BOG FOSTOTA GOBIERNO DE LA CIUDAD

Figura 1. Localización de estaciones de la RAB

Nota: las estaciones que se muestran en color morado son aquellas que por condiciones topográficas no pueden transmitir la señal directamente a la estación repetidora, por ello realizan un puente con otra estación remota para poder transmitir su señal

DPAE

Figura 2. Esquema de sistema telemétrico de la RAB

2.2 **CARACTERÍSTICAS DE LAS ESTACIONES**

La RAB cuenta con acelerógrafos de la marca KINEMETRICS tipo ETNA y K-2 tienen cada uno dos puertos de salida que pueden ser habilitados para comunicaciones remotas: Una interfase RS-232 la cual permite utilizar telemetría en tiempo real (recuperación remota) y el establecimiento de parámetros de respuesta del equipo (set-up), y un modem PCMCIA para acceso remoto que cumple con las mismas funciones mencionadas para el puerto RS-232. En la Tabla 2 se resumen la localización de cada estación y sus características principales.

No.	CODIGO	NOMBRE	DIRECCION	LATITUD	LONGITUD	EQUIPO	GEOLOGIA	TOPOGRAFIA			
1	CEING	ESCUELA COLOMBIANA DE INGENIERIA	Av 13 No. 205 - 59	4.7833	-74.0458	ETNA	SUELO	PLANA			
2	CUSAL	UNIVERSIDAD DE LA SALLE	Cr 7 No. 172 - 85	4.7559	-74.0264	ETNA	SUELO	PLANA			
3	CBOSA	COLEGIO FERNANDO MAZUERA	CI 68A Sur No. 87D - 09	4.6066	-74.1920	ETNA	SUELO	PLANA			
4	CCORP	UNIVERSIDAD CORPAS	Av Corpas, Km. 3, Vía Suba	4.7617	-74.0940	ETNA	SUELO	PLANA			
5	CUAGR	UNIAGRARIA	Cl 170 No. 50 - 90	4.7542	-74.0527	K - 2	SUELO/ROCA	PLANA			
6	CPSUB	ACADEMIA DE POLICIA	Tr 66 No. 138 - 50	4.7379	-74.0726	ETNA	ROCA	ONDULADA			
7	CUSAQ	COLONIA ESCOLAR DE USAQUEN	CI 127 No. 12A - 20	4.7064	-74.0332	ETNA	SUELO	PLANA			
8	CESCA	ESCUELA DE CABALLERIA	Cr 7 con Cl 106	4.6822	-74.0332	ETNA	SUELO	ONDULADA			
9	CBANC	BANCO DE LA REPUBLICA	Cr 57 No. 120 - 01	4.7085	-74.0791	ETNA	SUELO	ONDULADA			
10	CTVCA	T.V. CABLE	Dg 120 No. 86 - 75	4.7181	-74.0848	ETNA	ROCA	ONDULADA			
11	CFLOD	PARQUE LA FLORIDA	Km. 3, vía Engativa- Cota	4.7295	-74.1464	ETNA	SUELO	PLANA			
12	CAVIA	AVIANCA	Av El Dorado No. 92 - 30	4.6858	-74.1190	ETNA	SUELO	PLANA			
13	CFONT	PLANTA DE BOMBEO FONTIBON	Cl 13 con Cr 96	4.6607	-74.1454	ETNA	SUELO	PLANA			
14	CNIÑO	CENTRO DE ESTUDIOS DEL NINO	CI 71 No. 73A - 44	4.6962	-74.0932	ETNA	SUELO	PLANA			
15	CJABO	JARDÍN BOTANICO	Cl 57 No. 61 - 13	4.6665	-74.0993	ETNA	SUELO	PLANA			
16	CBART	COLEGIO SAN BARTOLOME	Cr 5 No. 34 - 00	4.6205	-74.0620	ETNA	ROCA	ONDULADA			
17	CUNMA	UNIVERSIDAD MANUELA BELTRAN	Cr 3 Este No. 60 - 50	4.6415	-74.0543	ETNA	SUELO	ONDULADA			
18	CDIOS	HOSPITAL SAN JUAN DE DIOS	Av 1 de Mayo No.10 - 01	4.5899	-74.0888	ETNA	SUELO	PLANA			
19	CCITE	CITEC	Cr 65B No 17A - 11	4.6395	-74.1131	ETNA	SUELO	PLANA			
20	CTIEM	CLUB EL TIEMPO	Cl 32 No. 125 - 01	4.6943	-74.1558	ETNA	SUELO	PLANA			
21	CTIMI	PARQUE TIMIZA	Dg 42 Sur No. 62 - 67	4.6084	-74.1511	ETNA	SUELO	PLANA			
22	CTUNA	PARQUE TUNAL	CI 48 con Av El Tunal	4.5753	-74.1313	ETNA	SUELO	PLANA			
23	CARTI	ESCUELA DE ARTILLERIA	Km. 4, vía Usme	4.5468	-74.1234	ETNA	SUELO	PLANA			
24	CMARI	BOMBEROS MARICHUELA	Cr 1A con cl 76A Bis sur	4.5117	-74.1171	ETNA	SUELO	PLANA			
25	CSMOR	COLEGIO SIERRA MORENA	CI 77A Sur No. 65 - 15	4.5746	-74.1701	ETNA	ROCA	ONDULADA			
26	CTEJE	ESCUELA DE TEJEDORES	Cr 32 No. 12 - 55	4.6149	-74.0951	ETNA	SUELO	PLANA			
27	CVITE	TANQUES DE VITELMA	CI 9 sur con Cr 9 Este	4.5750	-74.0716	ETNA	SUELO	ONDULADA			
28	CLAGO	COLEGIO LAUREANO GOMEZ	CI 90A No. 97 - 40	4.7180	-74.1003	ETNA	SUELO	PLANA			
29	CGRAL	ESCUELA GENERAL SANTANDER	Cl 44 Sur No. 45A - 15	4.5881	-74.1301	K - 2	SUELO/ROCA	PLANA			
30	CCKEN	COL-KENNEDY	Cl 38 Sur No 107C - 29	4.6459	-74.1715	ETNA	SUELO	PLANA			

Tabla 2. Descripción de las estaciones de acelerógrafos

2.3 EVENTOS REGISTRADOS

Una vez recibida la información en la estación maestra se procede a verificar si el registro corresponde efectivamente a un sismo o se trata de ruido, para lo cual se acude al catálogo de eventos sísmicos que está publicado en la página web de INGEOMINAS, de donde se obtienen los datos del evento y se asigna a cada señal. En la **Tabla 3** se presenta el resumen de eventos registrados por las estaciones de la RAB a la fecha y en la **Figura 3** se ilustra el número de estaciones que registraron cada evento sísmico, es importante mencionar que las estaciones con un mayor número de eventos son aquellas que cuentan con sensores en profundidad (CUAGR y CGRAL), puesto que el nivel de activación del sensor es muy bajo, a diferencia de las estaciones ubicadas en superficie que tienen un nivel de disparo alto por el ruido ambiental del sitio, lo cual se debe hacer de este modo para no saturar de ruido la memoria para que en el momento de ocurrir un evento sismico importante este disponible para su registro en la base de datos.

	Facha			Magnitud	Brofundidad	Coorde	nadas del							
		IIT	Sismo	(MI)	(km)	Epic	centro	Estaciones que registraron						
No	D/M/A	01		(ME)	(KIII)	Lat. N Long.								
1	25-Ene-99	18:19	Córdoba (Quin.)	6.2	Superficial	4.44	-75.71	CBART						
2	25-Ene-99	22:04	Córdoba (Quin.)	5.4	Superficial	4.41	-75.73	CBART						
3	14-Abr-99	07:26	Nido de Bucaramanga (Sant.)	6.1	170	6.82	-73.14	CBART						
4	01-Jun-99	21:42	Guayabetal (Cund.)	5.2	Superficial	4.29	-73.73	CEING, CBART						
5	10-Jun-99	03:22	Quetame (Cund.)	4.7	Superficial	4.31	-73.79	CBART						
6	17-Jul-99	12:23	Sativasur (Boya.)	5.6	Superficial	6.10	-72.74	CEING, CUSAL, CCORP, CPSUB, CAVIA, CBART						
7	08-Nov-99	05:52	Betulia (Sant.)	6.5	160	6.92	-73.18	CEING, CUSAL, CCORP, CUAGR, CPSUB, CTVCA, CFLOD, CAVIA, CFONT, CBART, CDIOS, CTUNA, CARTI, CVITE,						
	05 5 1 00	01.50			100		70.04	CGRAL, CRADI						
8	05-Feb-00	21:53	Nido de Bucaramanga (Sant.)	6	160	6.77	-73.21	CUAGR, CTVCA						
9	12-Sep-00	10:55	Nido de Bucaramanga (Sant.)	5.9	160	6.76	-73.18	CUAGR, CBART						
10	08-Nov-00	07:01	Juradó (Choc.)	6.4	Superficial	7.13	-77.94	CUAGR, CFLOD						
11	24-Nov-00	19:51	Nido de Bucaramanga (Sant.)	5.7	160	6.79	-73.02	CUAGR, CTVCA						
12	17-Dic-00	06:14	Nido de Bucaramanga (Sant.)	5.8	153	6.77	-72.97	CEING, CBART, CUAGR, CPSUB, CUSAQ, CTVCA, CLAGO						
13	03-May-01	16:14	Los Santos (Sant.)	5.3	159	6.83	-73.06	CUAGR						
14	18-May-01	15:04	Los Santos (Sant.)	5.5	159	6.82	-73.07	CBART, CTVCA, CUAGR						
15	22-Sep-01	03:23	Tuluá (Valle)	6.1	180	3.99	-76.09	CUAGR, CBART, CGRAL, CTVCA						
16	19-Nov-01	21:01	Cepitá (Sant.)	6.8	163	6.80	-72.97	CEING, CUAGR, CGRAL, CPSUB						
17	12-May-02	06:23	Los Santos (Sant.)	5.2	164	6.85	-73.06	CUAGR						
18	12-Jul-02	18:08	Cepitá (Sant.)	5.3	174	6.84	-73.03	CUAGR						
19	23-Nov-02	23:56	La Uribe (Meta)	5.6	Superficial	3.31	-74.41	CAVIA, CUAGR, CUSAQ						
20	22-Ene-03	15:55	Colombia (Huil.)	5.2	Superficial	3.58	-74.54	CAVIA, CUAGR						
21	03-Oct-04	08:30	Los Santos (Sant.)	5.6	158	6.84	-73.04	CUAGR, CGRAL						
22	15-Nov-04	09:06	Océano Pacífico	6.7	24	4.81	-77.79	CUAGR, CEING						
23	25-Feb-05	06:41	Los Santos (Sant.)	5.8	153	6.78	-73.17	CUAGR						
24	21-Abr-05	03:39	Tadó (Choc.)	5.3	88	5.19	-76.39	CUAGR						
25	26-Sep-05	01:55	Perú (Mw)	7.5	132	-5.61	-76.37	CUAGR						
26	06-May-07	04:47	Betulia (Sant.)	6	136	6.88	-73.26	CUSAL, CBANC						
27	17-Feb-08	21:16	Los Santos (Sant.)	5.6	143	6.84	-73.06	CUAGR, CGRAL						
28	25-Mar-08	07:38	Guaduas (Cund.)	4.7	Superficial	5.06	-74.72	CUAGR, CGRAL						
29	28-Mar-08	16:36	Zapatoca (Sant.)	5.3	135	6.88	-73.20	CUAGR						
30	24-May-08	19:20	Quetame (Cund.)	5.7	Superficial	4.40	-73.81	CEING, CUSAL, CBOSA, CCORP, CUAGR, CUSAQ, CESCA, CBANC, CTVCA, CFLOD, CAVIA, CFONT, CNIÑO, CJABO, CBART, CUNMA, CCITE, CTIEM, CTIMI, CTUNA, CMARI, CSMOR, CTEJE, CVITE, CGRAL, CCKEN						
31	24-May-08	19:23	Quetame (Cund.)	4.5	Superficial	4.42	-73.83	CUAGR, CMARI, CBART						
32	24-May-08	20:08	Quetame (Cund.)	4.4	Superficial	4.41	-73.76	CMARI						
33	24-May-08	20:21	Quetame (Cund.)	4.2	Superficial	4.37	-73.72	CGRAL						

Nota: los eventos sísmicos superficiales corresponden a todos aquellos que se generan a una profundidad < 5 Km.

Tabla 3. Eventos registrados por la RAB

BOOG POSITIVA GOBIERNO DE LA CIUDAD

Figura 3. Número de estaciones que registraron cada evento sísmico

Como se observa en la figura anterior los eventos con mayor cubrimiento fueron el sismo de Betulia Santander del 8 de noviembre de 1999 y el sismo de Quetame Cundinamarca del 24 de mayo de 2008, con 16 y 26 estaciones respectivamente.

CAPITULO 3

3 PROCESAMIENTO Y PUBLICACIÓN DE REGISTROS DE LA RAB

Una vez se obtienen los registros de las estaciones de la RAB, estos deben someterse a varios procedimientos para que la información esté en los formatos compatibles y de esta manera puedan ser publicados e interpretados. De este modo, este capítulo resume los aspectos más relevantes realizados para llevar a cabo el procesamiento y publicación de los registros.

Es importante mencionar que el procesamiento siguió los lineamientos dados en el estudio de la Universidad de Los Andes "Procesamiento e interpretación de la información sísmica de Bogotá" realizado en el año 2002. Estudio en el cual se procesaron y realizaron los catálogos de los registro de la RAB entre 1999 y 2001 (UNIANDES, 2002).

3.1 PROCESAMIENTO DE REGISTROS

El procesamiento de los registros consiste en realizar los procesos necesarios para obtener los datos de manera que puedan ser analizados fácilmente, para lo anterior se deben realizar los siguientes pasos:

- Numeración del registro de acuerdo con el consecutivo que tiene la estación.
- Conversión de los archivos madre de los acelerógrafos de formato *.EVT a archivos planos, para ello se ejecuta el aplicativo de KINEMETRICS KW2CNTS.EXE en entorno DOS para obtener los archivos planos de cada componente en Gales corregidos por línea base sustrayendo el promedio de los datos del pre-evento, mediante el siguiente comando:

-Comando: \KW2CNTS nombre.EVT -n -g -p

-Resultados: nombre.1PG, nombre .2PG y nombre .3PG para tipo ETNA y nombre.1PG, nombre .2PG y nombre .3PG nombre .4PG, nombre .5PG y nombre .6PG para tipo K-2

 Corrección y filtrado de los archivos planos *.nPG (n=1, 2, 3... 6) para obtener los *n.ACE, se realizan con los siguientes parámetros en cualquier procesador de señales disponible.

-Corrección de línea base polinomial de tipo lineal.

-Filtro Butterworth pasa bandas 0.25 Hz y 50 Hz de 6 orden.

-Resultados: *1.ACE, *2.ACE, *3.ACE para tipo ETNA y *1.ACE, *2.ACE, *3.ACE, *4.ACE, *5.ACE, *6.ACE para tipo K2

• Cálculo para cada componente del registro de los siguientes parámetros sísmicos:

-Duración estimada entre el 5 y 95% de la Intensidad de Arias

- -Intensidad de Arias en cm/s
- -Historias de aceleraciones, velocidades y desplazamientos

-Máximas aceleraciones, velocidades y desplazamientos

-Espectros de respuesta para 2, 5 y 10% de amortiguamiento de aceleraciones, velocidades y desplazamientos

-Espectro de Amplitudes de Fourier

Los resultados de cada una de los anteriores procesos se encuentran en formato digital debidamente ordenados por año y se compilan en el formato del catálogo de eventos diseñado en Excel. En la **Tabla 4** se resume la numeración de los archivos EVT y ACE procesados de cada estación.

														-	:STA		N													
SISMO	CEING	CUSAL	CBOSA	CCORP	CUAGR	CPSUB	cusaa	CESCA	CBANC	CTVCA	CFLOD	CAVIA	CFONT	CNIÑO	CJABO	CBART	CUNMA	cDIOS	CCITE	CTIEM	CTIMI	CTUNA	CARTI	CMARI	CSMOR	CTEJE	CVITE	CLAGO	CGRAL	CCKEN
25-Ene-99 Córdoba (Quin.) ML 6.2																1														
25-Ene-99 Córdoba (Quin.) ML 5.4	1															2								1						
14-Abr-99 Nido de Bucaramanga (Sant.) ML 6.1	1															3												1		
01-Jun-99 Guavabetal (Cund.) ML 5.2	1															4												1		
10-Jun-99 Quetame (Cund.) ML 4.7	1															5												1		
17-Jul-99 Sativasur (Bova.) ML 5.6	2	1		1		1						1				6												1		
08-Nov-99 Betulia (Sant.) ML 6.5	3 4	2 3		2 3	1	2				1 2	1 2	2 3	1 2			7 8		1 2				1 2	1 2				1		1 2	1 2 3
05-Feb-00 Nido de Bucaramanga (Sant.) ML 6					2					3																				
12-Sep-00 Nido de Bucaramanga (Sant.) ML 5.9					3											9														
08-Nov-00 Juradó (Choc.) ML 6.4					4						3																			
24-Nov-00 Nido de Bucaramanga (Sant.) ML 5.7					5					4																				
17-Dic-00 Nido de Bucaramanga (Sant.) ML 5.8	5				6	3	1			5						10												1		
03-May-01 Los Santos (Sant.) ML 5.3	1				7																									
18-May-01 Los Santos (Sant.) ML 5.5					8					6						11														
22-Sep-01 Tuluá (Valle) ML 6.1					9					7						12													3 4	
19-Nov-01 Cepitá (Sant.) ML 6.8	6				10	4																							5 6	
12-May-02 Los Santos (Sant.) ML 5.2					11																									
12-Jul-02 Cepitá (Sant.) ML 5.3					12																									
23-Nov-02 La Uribe (Meta) ML 5.6					13		2					4																		
22-Ene-03 Colombia (Huil.) ML 5.2					14							5																		
03-Oct-04 Los Santos (Sant.) ML 5.6					15																								7	
15-Nov-04 Océano Pacífico ML 6.7	7 8				16																									
25-Feb-05 Los Santos (Sant.) ML 5.8					17 18																									
21-Abr-05 Tadó (Choc.) ML 5.3					19																									1
26-Sep-05 Perú Mw 7.5					20																									
06-May-07 Betulia (Sant.) ML 6		4							1																					
17-Feb-08 Los Santos (Sant.) ML 5.6					21																								8	
25-Mar-08 Guaduas (Cund.) ML 4.7					22																								9	1
28-Mar-08 Zapatoca (Sant.) ML 5.3					23																									
24-May-08 Quetame (Cund.) ML 5.7	9	5	1	4	24		3	1	2	8	4	6	3	1	1	13	1		1	1	1	3		1	1	1	2		10	1
24-May-08 Quetame (Cund.) ML 4.5					25											14								2						
24-May-08 Quetame (Cund.) ML 4.4																								3						
24-May-08 Quetame (Cund.) ML 4.2																													11	

3.2 CATÁLOGO DE EVENTOS Y FICHA HISTÓRICA DE REGISTROS

A partir de la información procesada se compiló por cada año el catálogo de eventos registrados, el cual se presenta en el **Anexo 1**. En general cada hoja del catálogo presenta los datos generales del evento sísmico, las características de la estación de registro, los principales parámetros sísmicos de la señal analizada, las historias y espectros de aceleración velocidad y desplazamiento y el espectro de Amplitudes de Fourier, esto para cada componente del registro (EO, V y NS). De este modo se tienen tres hojas por cada registro en una estación tipo ETNA (superficie) y seis hojas para las estaciones tipo K2 (superficie y profundidad). En la **Figura 4** se presenta un ejemplo de una componente del catálogo de eventos.

De manera complementaria al catálogo de eventos se diseñaron e implementaron las fichas de registro histórico de eventos medidos en cada estación de la RAB con el fin de poder comparar de manera rápida todos los eventos registrados en un sitio determinado. Se representaron en términos de espectros de respuesta y espectros de respuesta normalizados por la aceleración máxima de la señal. En la **Figura 5** se presenta un ejemplo del histórico de eventos de la estación Escuela de Ingeniería CEING y en el **Anexo 2** se compilan las fichas de cada estación.

BOOG BOSITIVA GOBIERNO DE LA CIUDAD

EVENTO:		FECHA:	ESTACIÓN:	COMPONENTE:					
QUETAME - CUNDINA	MARCA	24/05/2008	TANQUES DE VI	TELMA	E-O				
LOCALIZACION EPICENTRO: QL HORA UT: 19.21	JETAME - CU	NDINAMARCA	ESTACION DE REGISTRO: T CODIGO: CVITE	ANQUES DE VIT	ELMA				
LATITUD: 4.399°N	LONGIT	UD: -73.814°E	LATITUD: 4.58°N LONGITUD: -74.07°E						
PROFUNDIDAD: 3.9 Km	FASE IN	TENSA: 15.1 s	APARATO DE REGISTRO: ETNA						
MAGNITUD ML: 5.7	INTENS	DAD ARIAS: 1.2E-0 cm/s	GEOLOGIA: SUELO	TOPOG	RAFIA: ONDULADA				
ARCHIVO: CVITE002.EVT	CANAL I	DE REGISTRO: 1	EPICENTRO: 34.5 Km	HIPOCE	NTRO: 34.7 Km				
TOTAL SITIOS DE REGISTRO:	27		RANGO DE REGISTRO: ±2g						
PROCESAMIENTO:	FILTRO	BUTTERWORTH ORDEN	6, PASA BANDA 0.25 - 50 Hz						
VALORES MÁXIMOS:	Amax = 25	.71 cm/s², t = 7.63 s	Vmax = 2.17 cm/s, t = 12.48 s	Dmax =	0.39 cm, t = 13.88 s				

Figura 4. Ejemplo de catálogo de eventos registrados de la RAB

FRECUENCIA (Hz)

PERIODO (s)

BOOG POSITIVA GOBIERNO DE LA CIUDAD

CEING - E-O - Pag:1

Nota: las imágenes satélite usadas para la localización de las estaciones de la RAB son propiedad de Google Earth.

Figura 5. Registro histórico de eventos de la estación CEING

3.3 PUBLICACIÓN DE LOS REGISTROS EN EL SIRE

El Sistema de Información para la Gestión de Riesgos y Atención de Emergencias de Bogotá - SIRE es un sistema de información que apoya la administración de la información relacionada con el proceso de gestión de riesgo y atención de emergencias de Bogotá, que se concibe como un instrumento que permite recopilar, integrar, producir y divulgar información técnica y de coordinación a las entidades del Sistema Distrital de Prevención y Atención de Emergencias – SDPAE, y facilita la inclusión del riesgo en la cultura a través de la información disponible y los servicios en línea dirigidos a la comunidad.

Bajo este enfoque, la información obtenida del monitoreo sísmico que se realiza mediante la Red de Acelerógrafos de Bogotá se publica periódicamente en la página del SIRE (<u>www.sire.gov.co</u>), para que esté a disposición de la comunidad y en especial de los expertos en el tema de amenaza sísmica y respuesta de sitio entre otros, de manera que se puedan adelantar investigaciones que sean útiles, para posteriormente actualizar los modelos empleados en los estudios relacionados. En la **Figura 6 y Figura 7** se ilustran las páginas web diseñadas para la RAB y para los registros que a la fecha se han procesado, los cuales se pueden descargar en el formato original del equipo (EVT) o el archivo (ACE) filtrado y corregido por línea base.

BOOG BOSTOTA GOBIERNO DE LA CIUDAD

Figura 6. Página web de la RAB en el SIRE

Figura 7. Página web de los eventos registrados por la RAB en el SIRE

CAPITULO 4

4 INTERPRETACIÓN DE REGISTROS

En el presente capítulo se resumen los principales aspectos que se logran interpretar de los registros medidos en las estaciones de la RAB, como son los periodos naturales de vibración, los niveles de amplificación, la distribución de aceleraciones máximas y duraciones espacialmente, entre otros. Adicionalmente, se analizarán los registros obtenidos en la estación CBOG1 que pertenece a la Red Nacional Acelerógrafos de Colombia - RNAC, de propiedad de INGEOMINAS que han sido suministrados gentilmente por dicho instituto para ser analizados en conjunto con las demás estaciones, cuyos eventos registrados se resumen en la **Tabla 5**.

FECHA d/m/a	HORA hh:mm:ss.ss (UT)	MAG. (ML)	PROF. Km	LAT. (°)	LONG. (°)	MUNICIPIO					
06/06/94	20:47:39	6.4	Sup.	2.850	-76.070	PAEZ (CAUCA)					
19/01/95	15:05:05	6.6	Sup.	5.034	-72.952	PAEZ (BOYACÁ)					
19/08/95	21:43:34	6.5	121	5.133	-75.713	RISARALDA (CALDAS)					
01/01/97	04:35:55	5.8	152	6.802	-73.153	LOS SANTOS (SANTANDER)					
11/06/97	19:11:04	5.8	151.4	6.820	-73.103	LOS SANTOS (SANTANDER)					
10/02/98	06:24:51	4.8	Sup.	5.173	-73.026	SAN EDUARDO (BOYACÁ)					
08/03/98	04:59:10	5.3	Sup.	6.265	-73.899	CIMITARRA (SANTANDER)					
25/01/99	18:19:18	6.1	Sup.	4.432	-75.703	CÓRDOBA (QUINDÍO)					
14/04/99	07:25:06	5.8	156	6.810	-73.100	LOS SANTOS (SANTANDER)					
15/05/99	10:20:38	4.6	22.2	4.670	-74.720	PULI (CUNDINAMARCA)					
01/06/99	21:42:00	5	Sup.	4.288	-73.736	GUAYABETAL (CUNDINAMARCA)					
17/07/99	12:21:25	5.4	Sup.	6.073	-72.727	SATIVASUR (BOYACÁ)					
08/11/99	05:51:20	6.2	164.4	6.866	-73.185	ZAPATOCA (SANTANDER)					
17/01/00	12:20:07.2	5.8	Sup.	6.67	-72.05	FORTUL (ARAUCA)					
05/02/00	21:52:49	5.6	147.2	6.823	-73.253	NIDO DE BUCARAMANGA					
24/05/00	01:02:02	4.4	6.6	4.76	-74.67	PULI (CUNDINAMARCA)					
12/09/00	10:54:55	5.6	158	6.74	-73.17	VILLANUEVA (SANTANDER)					
08/11/00	07:02:10	6.4	Sup.	7.13	-77.94	JURADO (CHOCÓ)					
17/12/00	06:13:25	5.5	155.2	6.82	-73.1	LOS SANTOS (SANTANDER)					
22/09/01	3:23:39.2	6.0	180	3.99	-76.08	TULUA (VALLE)					
19/11/01	21:01:42	5.9	160.5	6.813	-73.004	CEPITÁ (SANTANDER)					
26/04/02	1:36:28	5.4	Sup.	6.72	-73.71	EL CARMEN (SANTA)					
24/07/02	19:38:08	4.7	Sup.	4.69	-74.73	PULI (CUNDINAMARCA)					
23/11/02	23:56:42	5.6	Sup.	3.30	-74.42	LA URIBE (META)					
22/01/03	15:55:35	5.3	Sup.	3.580	-74.540	COLOMBIA (HUILA)					
26/09/05	01:55:39	Mw=7.5	127.4	-5.670	-76.41	MOYOBAMBA (PERÚ)					
24/05/08	14:21:00	5.7	Sup.	4.399	4.399 -73.814 QUETAME (CUNDINAN						

Sup.= Supericial menor o igual a 5 Km.

Tabla 5. Eventos registrados en la estación CBOG1 de Ingeominas

4.1 ANÁLISIS DE LA RESPUESTA SÍSMICA EN CADA ESTACIÓN

De acuerdo con los mapas de Geología (INGEOMINAS, 1995), Microzonificación Sísmica de Bogotá - MZSB-97(Figura 8) (INGEOMINAS & UNIANDES, 1997) y la propuesta de Actualización de la Microzonificación Sísmica de Bogotá, AMZSB-08 (Figura 9) (DPAE, 2008), se identificó en que unidad o zona se encuentra cada estación de la RAB de FOPAE y de RNAC de INGEOMINAS, de modo que se agruparon para efectos de los siguientes análisis en: Cerros, Piedemonte, Lacustre y Aluvial, como se señala en la Tabla 6.

No.	CÓDIGO	NOMBRE	EQUIPO	GEOLOGÍA	ZONA MZSB-97	ZONA AMZSB-08	GRUPO
1	CEING	E. COL. DE INGENIERÍA	ETNA	Llanura de Inundación	3 – Lacustre A	Lacustre-150	LACUSTRE
2	CUSAL	UNIVERSIDAD DE LA SALLE	ETNA	Coluvión	2 – Piedemonte	Piedemonte	PIEDEMONTE
3	CBOSA	COL. FERNANDO MAZUERA	ETNA	Complejo de Conos	1 – Cerros	Aluvial-100	ALUVIAL
4	CCORP	UNIVERSIDAD CORPAS	ETNA	Terraza Alta	4 – Lacustre B	Lacustre-250	LACUSTRE
5	CUAGR	UNIAGRARIA	K - 2	Terraza Alta	3 – Lacustre A	Lacustre-150	LACUSTRE
6	CPSUB	ACADEMIA DE POLICÍA	ETNA	Terraza Alta	2 – Piedemonte	Piedemonte	CERRO
7	CUSAQ	COL. ESCOLAR DE USAQUEN	ETNA GPS	Complejo de Conos	2 – Piedemonte	Piedemonte	PIEDEMONTE
8	CESCA	ESCUELA DE CABALLERÍA	ETNA	Coluvión	1 – Cerros	Cerro	CERRO
9	CBANC	BANCO DE LA REPUBLICA	ETNA	Terraza Alta	3 – Lacustre A	Lacustre-100	LACUSTRE
10	CTVCA	T.V. CABLE	ETNA GPS	Coluvión	1 – Cerros	Cerro	CERRO
11	CFLOD	PARQUE LA FLORIDA	ETNA	Llanura de Inundación	4 – Lacustre B	Lacustre-500	LACUSTRE
12	CAVIA	AVIANCA	ETNA	Terraza Alta	4 – Lacustre B	Lacustre-300	LACUSTRE
13	CFONT	PTA DE BOMBEO FONTIBON	ETNA	Llanura de Inundación	5 - Aluvial	Lacustre-300	LACUSTRE
14	CNIÑO	C. DE ESTUDIOS DEL NIÑO	ETNA	Llanura de Inundación	4 – Lacustre B	Lacustre-250	LACUSTRE
15	CJABO	JARDÍN BOTÁNICO	ETNA	Terraza Alta	3 – Lacustre A	Lacustre-300	LACUSTRE
16	CBART	COLEGIO SAN BARTOLOMÉ	ETNA	Coluvión	1 – Cerros	Cerro	CERRO
17	CUNMA	U. MANUELA BELTRÁN	ETNA	Formación Plaeners	1 – Cerros	Cerro	CERRO
18	CDIOS	HOSPITAL SAN JUAN DE DIOS	ETNA GPS	Complejo de Conos	5 – Aluvial	Piedemonte	PIEDEMONTE
19	CCITE	CITEC	ETNA GPS	Terraza Alta	3 – Lacustre A	Lacustre-250	ALUVIAL
20	CTIEM	CLUB EL TIEMPO	ETNA	Terraza Alta	4 – Lacustre B	Lacustre-500	LACUSTRE
21	CTIMI	PARQUE TIMIZA	ETNA	Complejo de Conos	5 – Aluvial	Aluvial-200	ALUVIAL
22	CTUNA	PARQUE TUNAL	ETNA	Terraza Baja	5 – Aluvial	Aluvial-50	ALUVIAL
23	CARTI	ESCUELA DE ARTILLERÍA	ETNA	Terraza Baja	2 – Piedemonte	Piedemonte	PIEDEMONTE
24	CMARI	BOMBEROS MARICHUELA	ETNA	Complejo de Conos	1 – Cerros	Cerro	PIEDEMONTE
25	CSMOR	COLEGIO SIERRA MORENA	ETNA	Coluvion	1 – Cerros	Cerro	CERRO
26	CTEJE	ESCUELA DE TEJEDORES	ETNA GPS	Complejo de Conos	5 – Aluvial	Aluvial-100	ALUVIAL
27	CVITE	TANQUES DE VITELMA	ETNA	Coluvion	1 – Cerros	Cerro	CERRO
28	CLAGO	COLEGIO LAUREANO GÓMEZ	ETNA GPS	Terraza Alta	4 – Lacustre B	Lacustre-200	LACUSTRE
29	CGRAL	ESCUELA GENERAL SANTANDER	K - 2	Complejo de Conos	5 – Aluvial	Aluvial-150	ALUVIAL
30	CCKEN	COL-KENNEDY	ETNA	Terraza Baja	5 – Aluvial	Aluvial-250	ALUVIAL
31	CBOG1	INGEOMINAS	K - 2	Terraza Alta	3 – Lacustre A	Lacustre-200	LACUSTRE
32	CBOG2	GAVIOTAS (INGEOMINAS)	ETNA	Formación Plaeners	1 – Cerros	Cerro	CERRO
33	CREAC	REACTOR (INGEOMINAS)	ETNA	Terraza Alta	3 – Lacustre A	Lacustre-250	LACUSTRE

Tabla 6. Clasificación de estaciones de acuerdo con las zonas geológicas y de respuesta sísmica

BOOG BOSTOTA

Figura 8. Localización de estaciones de la RAB en el mapa de MSB-97

BOOG POSTATA GOBIERNO DE LA CIUDAD

Figura 9. Localización de estaciones de la RAB en el mapa de AMSB-08

Para cada estación se calcularon los espectros de respuesta de aceleración, velocidad y desplazamiento, y en las estaciones con sensor en profundidad (Down Hole) ver Tabla 7, se obtuvieron relaciones espectrales de cada señal. Para un mejor entendimiento de los análisis se resume brevemente algunos conceptos importantes a continuación.

Espectro de respuesta: describe la máxima respuesta de un sistema de un grado de libertad (single-degree of freedom SDOF) para una excitación particular, la máxima respuesta o valor espectral será función de la frecuencia o periodo natural y de la relación de amortiguamiento del sistema SDOF. El espectro de respuesta se gráfica usualmente en termino de valores espectrales de aceleración, velocidad o desplazamiento versus el periodo natural del sistema SDOF.

Espectro de amplitudes de Fourier: describe como las amplitudes del movimiento se distribuyen con respecto a las frecuencias de los ciclos, en éste se aprecia claramente el contenido frecuencial de la señal.

Función de transferencia: es una aproximación lineal del comportamiento del medio transmisor, las funciones de transferencia son derivadas a partir de los espectros de amplitudes de Fourier en superficie y roca, de esta manera se puede observar el efecto del medio en la señal en términos de amplificación para cada frecuencia de la señal.

Relación espectral: se define como el cociente entre el espectro de respuesta en superficie y el espectro de respuesta en roca de la señal analizada, de esta manera se pueda observar el efecto del depósito de suelo a la señal de análisis en términos de la amplificación presentada para cada período de vibración.

Periodo dominante: corresponde al inverso de la frecuencia de mayor contenido frecuencial de la señal, usualmente se emplea el término para caracterizar el movimiento sísmico y se correlaciona con la distancia a la fuente que la originó.

Periodo natural: corresponde al periodo de vibración del depósito donde se presenta la mayor amplificación, el cual se manifiesta en el primer modo de vibración.

4.1.1 Zona de Cerros

La zona de cerros comprende los sectores en los que afloran las rocas sedimentarias, bajo esta condición se encuentran siete estaciones de la RAB, de las cuales dos están en los cerros de suba, Academia de Policía (CPSUB) y TV Cable (CTVCA); cuatro en los cerros orientales, Escuela de Caballería (CESCA), Universidad Manuela Beltrán (CUNMA), Colegio San Bartolomé (CBART) y Tanques de Vitelma (CVITE); y una en los cerros del sur en el Colegio Sierra Morena (CSMOR). De la **Figura 10** a la **Figura 16** se presentan los registros medidos en las estaciones de la RAB localizadas en la zona de Cerros.

Figura 10. Espectros de respuesta y respuestas normalizadas CPSUB

GOBIERNO DE LA CIUDAD

Figura 12. Espectros de respuesta y respuestas normalizadas CESCA

Figura 13. Espectros de respuesta y respuestas normalizadas CUNMA

Figura 15. Espectros de respuesta y respuestas normalizadas CVITE

Figura 16. Espectros de respuesta y respuestas normalizadas CSMOR

De acuerdo con las figuras anteriores los periodos dominantes de las señales registradas están entre 0.2 y 0.4 s, a excepción de la estación CSMOR, que la señal que registró tiene un periodo dominante entre 0.5 y 1 s. Se presentan relaciones Sa/Ao hasta de 5 en las estaciones de los Cerros de Suba y de 4 para las demás estaciones.

A pesar de las grandes diferencias en las magnitudes y distancias de los sismos registrados, la respuesta en superficie de estas estaciones es normalizable en su mayoría, presentando amplificaciones importantes a periodos bajos por efectos de sitio asociados a la topografía del terreno y pequeños depósitos de ladera.

La estación de CSMOR presenta al parecer menos efecto topográfico que las demás y su registro es muy similar al registrado en el Down Hole de la Escuela General Santander CGRAL del sismo de Quetame, como se ilustrará más

adelante. Se destaca de esta estación su localización pues se encuentra en los cerros del sur de la ciudad, donde la pendiente del terreno es baja a moderada y por ello el efecto topográfico puede ser poco.

4.1.2 Zona de Piedemonte

La zona de piedemonte corresponde a los depósitos que se encuentran entre los cerros y las zonas de planicie (lacustre y aluvial) compuesta predominantemente por suelos duros de espesores menores a 50 m. De acuerdo con esto se localizan cinco estaciones de la RAB en esta zona, de las cuales dos están en el piedemonte del norte de la ciudad, Universidad de la Salle (CUSAL) y la Colonia Escolar de Usaquén (CUSAQ); una en el piedemonte del centro en el Hospital San Juan de Dios (CDIOS) y dos en los piedemontes del sur en la Escuela de Artillería (CARTI) y en los Bomberos de Marichuela (CMARI).

De la Figura 17 a la Figura 21 se presentan los registros medidos en cada estación de la RAB en la zona de piedemonte.

Figura 17. Espectros de respuesta y respuestas normalizadas CUSAL

Figura 18. Espectros de respuesta y respuestas normalizadas CUSAQ

Figura 20. Espectros de respuesta y respuestas normalizadas CARTI

Figura 21. Espectros de respuesta y respuestas normalizadas CMARI

Se observa en las figuras anteriores que los periodos dominantes de las señales registradas en el piedemonte están entre 0.4 y 0.7 s con relaciones Sa/Ao hasta de 4, además las estaciones del piedemonte norte de la ciudad CUSAL y CUSAQ presentaron para el sismo de Quetame respuestas espectrales considerables en altos periodos (1.5 a 2.5 s) con relaciones Sa/Ao hasta de 2.5.

Las mayores amplificaciones en los periodos bajos se presentan por efectos de la topografía del terreno y espesor del depósito y en las estaciones del piedemonte norte se identifican amplificaciones en los periodos altos posiblemente por la incidencia de la zona lacustre con la que limita.

BODG BOSITIVA GOBIERNO DE LA CIUDAD

4.1.3 Zona Lacustre

La zona lacustre corresponde a los sectores compuestos por suelos de origen lacustre de espesor que varia entre 50 y 500 m, en esta zona se localizan 11 estaciones de la RAB de FOPAE y una estación de la RNAC propiedad de INGEOMINAS, distribuidas de la siguiente manera: 3 al norte entre los cerros de Suba y Orientales, Universidad Agraria (CUAGR), Escuela colombiana de ingeniería (CEING), y Banco de la Republica (CBANC); 2 al costado occidental de los cerros de Suba, en la Universidad Corpas (CORP) y el Colegio Laureano Gómez (CLAGO); y 7 estaciones entre la Cl 80 y la Cl 13 apróximadamente, en INGEOMINAS (CBOG1), Centro de Estudios del Niño (CNIÑO), Jardín Botánico (CJABO), Avianca (CAVIA), Planta de Bombeo de Fontibón (CFONT), Club el Tiempo (CTIEM) y Parque de la Florida (CFLOD). De la **Figura 22** a la **Figura 33** se presentan los registros medidos en cada estación de la RAB en la zona lacustre.

Figura 22. Espectros de respuesta y respuestas normalizadas CUAGR Superficie

Figura 23. Espectros de respuesta y respuestas normalizadas CEING

Figura 25. Espectros de respuesta y respuestas normalizadas CCORP

Figura 26. Espectros de respuesta y respuestas normalizadas CLAGO

Figura 28. Espectros de respuesta y respuestas normalizadas CNIÑO

Figura 29. Espectros de respuesta y respuestas normalizadas CJABO

Figura 31. Espectros de respuesta y respuestas normalizadas CFONT

Figura 32. Espectros de respuesta y respuestas normalizadas CTIEM

Figura 33. Espectros de respuesta y respuestas normalizadas CFLOD

En general, se observa en las figuras anteriores que los periodos dominantes de las señales registradas se presentan en varios segundos, los cuales son en función de la señal de entrada (magnitud y distancia) y el espesor del depósito bajo cada estación, de este modo se destacan los siguientes aspectos:

- Los sismos originados en el Nido de Bucaramanga (fuente profunda a 260 Km de la ciudad aproximadamente) presentan aceleraciones espectrales inferiores a 20 Gales a un periodo de 0.5 s. Se destaca que a pesar de que estos sismos son lejanos no presentan contenidos frecuenciales importantes a periodos altos.
- Las señales de sismos originados en la zona de subducción (Jurado, Perú y Océano Pacifico) presentan aceleraciones espectrales hasta de 50 Gales entre 2.0 y 3.0 s de periodos.
- Sismos de fuentes corticales a distancias entre 50 y 150 km aproximadamente (Dptos de Cundinamarca, Meta, Boyacá y Huila) registraron aceleraciones espectrales hasta de 180 Gales, presentando por lo general dos o tres periodos dominantes, uno a 0.5 s (dominante de la señal), otro entre 1 y 1.5 s (segundo modo de vibración) y entre 2 y 3.5 s (primer modo de vibración). Se destaca de estos sismos que a pesar de ser sismos de fuentes regionales tienen contenidos frecuenciales a periodos altos importantes, que son amplificados a los periodos naturales de vibración de los depósitos de suelos blandos.
- Se observa igualmente que los sismos de menor energía llegan a movilizar solamente los modos secundarios de vibración natural del depósito y que los sismos de mayor energía son capaces de producir amplificaciones en los modos primarios y secundarios. En la Figura 22 se aprecia que las señales de los sismos del Nido de Bucaramanga presentan periodos dominantes de 0.5 s y las señales de las fuentes regionales, como el sismo de Quetame, presentan tres periodos dominantes, a 0.6, 1.1 y 2.3 s. En el numeral 4.1.5 se resume de manera más clara el efecto del depósito de suelo a las señales con base en las señales registradas en los Down Hole.
- En cuanto a las relaciones Sa/Ao se observa en general que para periodos bajos (menor a 1 s) son de alrededor de 3 a 4 y para los periodos altos (mayor a 1 s) están entre 4 y 6.
- Los periodos naturales de vibración del depósito aumentan en la medida que las estaciones se alejan de los cerros, lo que es acorde con el sentido en que se profundiza el basamento rocoso, por ejemplo la estación CBANC, cercana a los cerros de Suba, presenta un periodo natural de 1.05 s y la estación CFLOD, al lado del Río Bogotá, tiene un periodo de natural de 4.25 s. Sin embargo, la estimación del periodo natural de vibración se mostrará en el numeral 4.2.2 con base en las relaciones espectrales calculadas para el sismo de Quetame.

BODG BOSITIVA GOBIERNO DE LA CIUDAD

4.1.4 Zona Aluvial

La zona aluvial corresponde a los sectores compuestos por suelos de origen aluvial de espesor que varia entre 50 y 300 m, en esta zona se localizan siete estaciones de la RAB; Escuela General Santander (CGRAL), Parque Tunal (CTUNA), Escuela de Tejedores (CTEJE), Parque Timiza (CTIMI), Colegio Fernando Mazuera (CBOSA), Centro de Investigación de Tecnología de la Universidad de los Andes (CCITE) y el Col de Kennedy (CCKEN). De la **Figura 34** a la **Figura 40** se presentan los registros medidos en cada estación de la RAB en la zona aluvial.

Figura 34. Espectros de respuesta y respuestas normalizadas CGRAL Superficie

Figura 35. Espectros de respuesta y respuesta normalizado CTUNA

Figura 36. Espectros de respuesta y respuestas normalizadas CTEJE

GOBIERNO DE LA CIUDAD

Figura 38. Espectros de respuesta y respuestas normalizadas CBOSA

Figura 39. Espectros de respuesta y respuestas normalizadas CCITE

Figura 40. Espectros de respuesta y respuestas normalizadas CCKEN

Se observa en los espectros de respuestas de las estaciones en las zonas aluviales que los periodos dominantes de las señales registradas están entre 0.5 y 1.0 s, con relaciones Sa/Ao entre 3 y 4. Adicionalmente se aprecia que las estaciones más alejadas de los cerros o cercanas a la zona lacustre (con mayores espesores de sedimentos) presentan amplificaciones menores a periodos altos, entre 2 y 2.5 s, y relaciones Sa/Ao inferiores a 2.

En comparación con las otras zonas en las que se agruparon las estaciones, cerros, piedemonte y lacustre, los registros de la zona aluvial presentan las menores aceleraciones espectrales, lo cual puede obedecer al tipo de material predominante, limos arenosos y arenas arcillosas, que por su comportamiento dinámico degradan y amortiguan más que otros materiales.

4.1.5 Registros en profundidad y relaciones espectrales

Una de las bondades del diseño actual de la RAB es poder contar con registros en profundidad o denominados Down Hole, los cuales se ubicaron en tres estaciones (dos de la RAB y una de la RNAC) de manera tal que se abarcara los sectores norte, centro y sur de la ciudad. Estos sensores se localizaron en el contacto con el basamento rocoso con el fin de estudiar el comportamiento sísmico de los depósitos, en la **Tabla 7** se resumen las estaciones con Down Hole.

Estación	Nombre	Zona	Profundidad del acelerógrafo
CUAGR	Uniagraria	Lacustre	130 m
CBOG1*	Ingeominas	Lacustre	180 m
CGRAL	Esc. General Santander	Aluvial	100 m
CBOG1* CGRAL	Ingeominas Esc. General Santander	Lacustre Aluvial	180 m 100 m

*CBOG1: propiedad de INGEOMINAS.

Tabla 7. Estaciones con Down Hole

Es importante mencionar que los registros de los Down Hole corresponden a una condición de estados de esfuerzos confinada, por lo cual en el cálculo de las relaciones espectrales se debe multiplicar por dos estas señales, para tener en cuenta el efecto del confinamiento y así aproximarlo a una condición de superficie o campo libre.

En la **Figura 41** se presentan los espectros de respuesta y respuestas normalizadas en el Down Hole y en la **Figura 42** se muestran las relaciones espectrales calculadas a partir de las mediciones en superficie y profundidad de los registrados de la estación de Uniagraria (CUAGR).

Figura 41. Espectros de respuesta y respuestas normalizadas CUAGR Down Hole

Figura 42. Relaciones espectrales CUAGR

A partir de las relaciones espectrales calculadas en la estación CUAGR se concluye que la amplificación del deposito en términos espectrales presenta grandes variaciones, sin embargo se puede apreciar claramente los periodos naturales de vibración del suelo en 2.2 s con amplificaciones entre 6 y 12, en 1 s con amplificaciones entre 3 y 6 y en 0.7 s con amplificaciones hasta de 4 veces.

En la **Figura 43** se presentan los espectros de respuesta y respuestas normalizadas en el Down Hole y en la **Figura 44** se muestran las relaciones espectrales calculadas a partir de las mediciones en superficie y profundidad de los registrados de la estación de Ingeominas (CBOG1).

Figura 44. Relaciones espectrales CBOG1

Similar a la estación CUAGR es el comportamiento de los depósitos en CBOG1 presentando grandes variaciones en los niveles de amplificación, pero se identifican claramente los periodos naturales de vibración del suelo en 2.3 s con amplificaciones entre 6 y 12, en 1.15 s con amplificaciones entre 4 y 8 y en 0.75 y 0.45 s con amplificaciones hasta de 3 veces. A un periodo de 0.1 s se identifica amplificaciones importantes, pero al revisar cuidadosamente los registros se encontró que se trata de ruido en la señal, no es la respuesta del suelo como se observa en las señales más recientes.

GOBIERNO DE LA CIUDAD

Los registrados de la estación de La Escuela General Santander (CGRAL) se presentan en la **Figura 45** en términos de espectros de respuesta y respuestas normalizadas en el Down Hole y en la **Figura 46** se muestran las relaciones espectrales calculadas a partir de las mediciones en superficie y profundidad.

Figura 45. Espectros de respuesta y respuestas normalizadas CGRAL Down Hole.

Las relaciones espectrales calculadas de la estación CGRAL presentan menor dispersión que en las otras estaciones analizadas, se distinguen dos periodos naturales de vibración, uno entre 0.9 y 1 s y un segundo modo a 0.45 s, con amplificaciones de 1.5 a 2 veces. Se destaca que para periodos altos (mayor a 1 s) la mayoría de los registros se presentaron de-amplificaciones (Relación espectral menor a 1). Sin embargo, el hecho que no se distinga claramente un periodo dominante en la respuesta espectral de este sitio y que la forma de los espectros de respuesta en el Down Hole, hacen pensar que el sensor no se encuentra exactamente en el contacto con el basamento rocoso, luego los resultados presentados de esta estación merecen una revisión más detallada.

Con base en estos resultados de las dos estaciones en la zona lacustre, se logra identificar que la respuesta sísmica de los depósitos de esta zona (suelos arcillosos blandos) para los registros obtenidos hasta la fecha por la RAB está en el intervalo elástico lineal, con grandes amplificaciones, de modo que niveles de amplificación calculados pueden llegar a ser los máximos. En el caso de la estación en la zona aluvial se tienen niveles de amplificación bajos, debido al comportamiento no lineal importante que presentan los tipos de suelos de esta zona (suelos limosos y arenosos duros).

4.2 ANÁLISIS DE SISMOS DESTACADOS

Como se mencionó en el numeral 2.3 se ha registrado a la fecha 33 eventos sísmicos en la RAB, en la **Figura 47** se resumen los valores de aceleración máxima registrada en superficie en cada evento, se puede apreciar que la mayoría de eventos han tenido aceleraciones inferiores a 5 Gales, algunos con aceleraciones entre 5 y 10 Gales y el evento del 24 de mayo de 2008 en Quetame presentó una aceleración máxima del orden de 50 Gales (incluyendo efectos de sitio).

Figura 47. Aceleraciones máximas registradas en superficie por evento sísmico

A continuación se presentan los análisis realizados para los dos eventos sísmicos con mayor número de registros obtenidos por la RAB de dos fuentes sismogénicas, Betulia Santander en el día 08/11/99 y Quetame Cundinamarca el día 24/05/08.

- 4.2.1 Evento del día 8 de noviembre de 1999 Betulia, Santander
- 4.2.1.1 Características del evento:

Fecha: 08 – Nov – 1999 Hora UT: 05:52 Magnitud ML: 6.5 Profundidad: 160 Km Epicentro: Latitud 6.92° N Longitud -73.18° E Estaciones de registro (17): CEING, CUSAL, CCORP, CUAGR, CPSUB, CTVCA, CFLOD, CAVIA, CFONT, CBART, CDIOS, CTUNA, CARTI, CVITE, CGRAL, CRADI* y CBOG1**. *Cambio a CCKEN, **Propiedad de INGEOMINAS

4.2.1.2 Aceleraciones máximas registradas en superficie

En la **Tabla 8** se resumen los valores de aceleraciones máximas registradas en las estaciones para cada componente del movimiento y en la **Figura 48** se presenta su correspondiente distribución espacial.

CODIGO	NOMBRE	Amáx E-O	Amáx V	Amáx N-S
CEING	ESCUELA COLOMBIANA DE INGENIERIA	8.67	1.95	6.99
CUSAL	UNIVERSIDAD DE LA SALLE	5.62	4.8	6.15
CCORP	UNIVERSIDAD CORPAS	8.77	2.13	8.17
CUAGR	UNIAGRARIA Superficie	6.17	2.65	4.69
CUAGR	UNIAGRARIA Down hole	1.64	0.84	1.24
CPSUB	ACADEMIA DE POLICIA	3.29	1.53	2.91
CTVCA	T.V. CABLE	4.06	1.81	3.58
CFLOD	PARQUE LA FLORIDA	6.77	1.52	6.7
CAVIA	AVIANCA	5.81	1.28	6.21
CFONT	PLANTA DE BOMBEO FONTIBON	4.22	1.41	3.2
CBART	COLEGIO SAN BARTOLOME	1.83	0.77	1.27
CDIOS	HOSPITAL SAN JUAN DE DIOS	2.51	1.28	2.75
CTUNA	PARQUE TUNAL	3.19	1.27	2.76
CARTI	ESCUELA DE ARTILLERIA	1.84	1.66	1.74
CVITE	TANQUES DE VITELMA	3.27	0.94	2.02
CGRAL	ESCUELA GENERAL SANTANDER Superficie	2.4	2.03	2.34
CCKEN	COL-KENNEDY (anterior CRADI)	2.21	1.46	2.42
CBOG1	INGEOMINAS Superficie	3.01	1.33	3.83
CBOG1	INGEOMINAS Down Hole	0.94	0.61	0.76

Tabla 8. Valores de aceleración máxima registrada sismo de Betulia 08/11/1999

A partir de los datos registrados del sismo de Betulia de 1999 se tiene que en la zona lacustre (norte y nor-occidente de la ciudad) se presentaron las mayores amplificaciones, a diferencia de los sectores aluviales (sur y sur occidente de la ciudad). Se aprecia igualmente la atenuación de la onda entre Down hole de Uniagraria e Ingeominas siguiendo la dirección de llegada de la onda proveniente del norte del país.

En cuanto a los periodos naturales de vibración, la energía del evento fue muy baja como para determinarlos claramente, puesto que se aprecia en los espectros de respuesta de los registros el dominio de periodos secundarios de vibración o el periodo dominante de la señal original, por lo que no se identificó con claridad el periodo fundamental de los depósitos.

4.2.2 Evento de día 24 de mayo de 2008 Quetame Cundinamarca

4.2.2.1 Características del evento:

Fecha: 24 – May – 2008 Hora UT: 19:20 Magnitud ML: 5.7 Profundidad: Superficial Epicentro: Latitud 4.399° N Longitud -73.814° E Estaciones de registro (29): CEING, CUSAL, CBOSA, CCORP, CUAGR, CUSAQ, CESCA, CBANC, CTVCA, CFLOD, CAVIA, CFONT, CNIÑO, CJABO, CBART, CUNMA, CCITE, CTIEM, CTIMI, CTUNA, CMARI, CSMOR, CTEJE, CVITE, CGRAL, CCKEN, CBOG1*, CBOG2* y CREAC*. *Propiedad de INGEOMINAS

GOBIERNO DE LA CIUDAD

Figura 48. Distribución de aceleraciones máximas registradas sismo de Betulia 08/11/1999

En la Figura 49 se presenta la localización del epicentro del evento junto con las réplicas, la distancia aproximada a las estaciones ubicadas en cerros orientales estuvo entre 35 y 40 km, a la estación de Ingeominas 42 km y a la estación de Parque la Florida 50 km.

Figura 49. Localización del epicentro y replicas del sismo de Quetame (Ingeominas, 2008)

4.2.2.2 Cálculo de la componente rotada

Para los análisis posteriores es necesario calcular la componente del movimiento en el sentido transversal, es decir en la dirección de mayor contenido de ondas de corte, que son las ondas importantes en la evaluación de la respuesta de sitio y nos simplifica los análisis de dos componentes, EO y NS, a una sola que se denominara SH.

El procedimiento para la obtención de la componente rotada consistió en calcular el ángulo de rotación para el cual la resultante del movimiento tienen la mayor Intensidad de Arias, para esta componente se calcularon los parámetros sísmicos y espectros que se presentan a continuación.

4.2.2.3 Aceleraciones máximas y duración de la fase intensa registradas en superficie

A partir de cada uno de los registros obtenidos de la componente de ondas de corte, SH, se cálculo los valores de aceleraciones máximas, intensidad de Arias y Duración de la fase intensa. Los valores respectivos de cada estación se resumen en la **Tabla 9**.

ALCALDIA MAYOR DE BOODTA D.C. GODERING EGUIDEAD Y CONTINUEND
Fondo de Prevención y

BOOG POSITIVA GOBIERNO DE LA CIUDAD

Código	Nombre	Epicentro (Km)	Hipocentro (Km)	Intensidad Arias (cm/s)	Fase intensa (s)	Amax (cm/s ²)
CEING	ESC. COLOMBIANA DE INGENIERIA	49.3	49.5	5.1	46.2	24.8
CUSAL	UNIVERSIDAD DE LA SALLE	46.3	46.4	1.1	28.6*	14.0
CBOSA	COLEGIO FERNANDO MAZUERA	47.7	47.9	1.7	21.9	25.2
CCORP	UNIVERSIDAD CORPAS	49.9	50.1	2.2	69.8	16.0
CUAGR	UNIAGRARIA Sup.	46.5	46.7	3.7	44.5	25.6
CUAGR	UNIAGRARIA DH.	46.5	46.7	0.65	39.6	5.0
CUSAQ	COLONIA ESCOLAR DE USAQUEN	41.6	41.8	8.2	36.4	39.7
CESCA	ESCUELA DE CABALLERIA	39	39.2	0.67	17.4	14.2
CBANC	BANCO DE LA REPUBLICA	45	45.2	0.71	26.1*	14.3
CTVCA	T.V. CABLE	45.8	46	0.67	23.5	18.5
CFLOD	PARQUE LA FLORIDA	51.8	52	2.7	52.9*	18.5
CAVIA	AVIANCA	44.2	44.4	3.6	50.3	28.1
CFONT	PLANTA DE BOMBEO FONTIBON	46.8	47	2.8	62.3	17.0
CNIÑO	CENTRO DE ESTUDIOS DEL NINO	44.9	45.1	6.1	31.6*	26.6
CJABO	JARDÍN BOTANICO	43.3	43.5	5	32.6*	33.3
CBART	COLEGIO SAN BARTOLOME	36.3	37.7	0.73	17.1	24.7
CUNMA	UNIVERSIDAD MANUELA BELTRAN	37.1	37.3	4.3	15.8	49.4
CCITE	CITEC	42	42.2	2.5	40.6	24.9
CTIEM	CLUB EL TIEMPO	49.7	49.9	2.8	32.6*	26.8
CTIMI	PARQUE TIMIZA	43.6	43.8	1.3	36.1	15.7
CTUNA	PARQUE TUNAL	40	40.2	1.5	25.2	21.4
CMARI	BOMBEROS MARICHUELA	35.8	36	6.4	19.8	46.5
CSMOR	COLEGIO SIERRA MORENA	43.4	43.6	0.23	20.1	9.0
CTEJE	ESCUELA DE TEJEDORES	39.1	39.3	3.5	14.1	33.5
CVITE	TANQUES DE VITELMA	34.5	34.7	1.4	15.1	26.3
CGRAL	ESCUELA GENERAL SANTANDER Sup.	40.6	40.8	1.6	35.9	18.5
CGRAL	ESCUELA GENERAL SANTANDER DH.	40.6	40.8	0.38	40.2	6.8
CCKEN	COL-KENNEDY	47.9	48	1.5	43.4	17.7
CBOG1	INGEOMINAS	39.5	39.7	7.3	29.6	37.3
CBOG1	INGEOMINAS	39.5	39.7	0.16	25.4	7.4

* Duración cortada por el registro

Tabla 9. Parámetros sísmicos de los registros del sismo de Quetame en Bogotá, componente SH

A partir de los datos se proyecto la distribución espacial de las aceleraciones máximas registradas en la ciudad, para de manera aproximada estimar el mapa de iso-aceleraciones como se ilustra en la **Figura 50**. La variación marcada de las aceleraciones máximas se debe entender como una tendencia general por la poca cantidad de puntos de control y las condiciones heterogéneas de contorno.

En la **Figura 51** se presenta la variación de la duración de la fase intensa medida en cada una de las estaciones de la RAB. Algunos datos fueron corregidos por que estaban las señales cortadas por lo que se estimó la duración con base en los registros cercanos de la misma zona.

BOOG POSTATIA

Figura 50. Distribución de aceleraciones máximas registradas sismo de Quetame 24/05/2008

GOBIERNO DE LA CIUDAD

Figura 51. Distribución de la duración de la fase intensa del sismo de Quetame 24/05/2008

4.2.2.4 Espectros de respuesta y relaciones espectrales

A continuación se presentan en la **Figura 52** los espectros de respuesta de los registros obtenidos en roca profunda Down Hole y se comparan con los de roca en superficie (multiplicando por dos los registros Down Hole).

Figura 52. Espectros de respuesta de roca en Down Hole y Superficie

Se aprecia en la figura anterior que las señales tienen un periodo dominante de 0.35 s en CBOG1 y CUAGR, sin embargo en CGRAL el periodo dominante es 1.0 s, se destaca que el contenido frecuencial para periodos altos es importante. En comparación con los registros de superficie se aprecia que en la mayoría de las estaciones hubo amplificación en los periodos bajos de la señal por efecto topográfico y de-amplificación de los periodos altos.

Dado que la señal de la estación CGRAL se aleja del comportamiento general de las demás y que su espectro de respuesta refleja posibles efectos de sitio, tal vez por que el sensor no se encuentra exactamente en roca, esta señal no se tendrá en cuenta para el cálculo de las relaciones espectrales de cada registro.

Se aprecia que la estación CSMOR registró las menores aceleraciones y su contenido frecuencial difiere de las demás en superficie rocosa, pero se asemeja a los registros de Down Hole. Aunque este es el primer registro de esa estación es posible que las condiciones de sitio en las que se encuentren sirvan para tenerla en cuenta como estación de referencia en roca sin efectos de sitio.

Para todos los registros en superficie del sismo de Quetame se calcularon los espectros de respuesta y se estimaron de manera aproximada las relaciones espectrales entre la respuesta en superficie y el registro de Down Hole mas cercano, básicamente la zona norte de la ciudad trabajó con el registro de CUAGR, el centro y sur de la ciudad con el registro de CBOG1, como se mencionó el registro de CGRAL no se tuvo en cuenta por que al parecer no corresponde a roca.

En la Figura 53 se presentan los resultados para la zona de cerros, en la Figura 54 para el piedemonte, en la Figura 55 para la zona lacustre y en la Figura 56 para los depósitos aluviales.

BODG BOSITIVA GOBIERNO DE LA CIUDAD

Figura 53. Espectros de respuesta y relaciones espectrales calculadas para la zona cerros

Figura 54. Espectros de respuesta y relaciones espectrales calculadas para la zona piedemonte

Figura 55. Espectros de respuesta y relaciones espectrales calculadas para la zona lacustre

Figura 56. Espectros de respuesta y relaciones espectrales calculadas para la zona aluvial

Se destacan los siguientes aspectos de las anteriores figuras:

- Zona de cerros: se amplifica de 2 a 4 veces la señal en periodos entre 0.1 y 0.7 y de-amplifica los periodos mayores a 2 segundos.
- Zona de piedemonte: amplifica de 4 a 6 veces tanto para los periodos bajos entre 0.5 y 0.8 como para periodos altos de 2 segundos.
- Zona lacustre: amplifica de 4 a 10 veces la señal varían entre 1 a 4 segundos de periodo, no hay un solo periodo característico para toda la zona, la respuesta de cada estación está dominada en el intervalo de periodos altos. Sin embargo, si se asocia cada estación al espesor del depósito se ve claramente la correspondencia entre el periodo y el espesor de suelo, de manera que las estaciones con espesor de 50 m (CBANC) tienen un periodo natural de 1.05 s y la estación con 500 m de espesor de sedimento (CFLOD) es de 4.25 s.
- Zona aluvial: las amplificaciones son del orden de 3 a 4 veces entre 0.8 y 1.9 s de periodo, se aprecia que las estaciones más cercanas a los cerros presentan mayores amplificaciones y las más lejanas un poco menos, es decir que similar a la zona lacustre hay relación de las respuestas con el espesor de sedimentos.
- 4.2.2.5 Periodo natural de vibración del depósito

A partir de las relaciones espectrales calculadas para cada una de las estaciones que registraron el evento de Quetame se estimaron los periodos naturales de vibración, para ello se consideró el periodo en el cual se presentó la mayor amplificación de la señal. Los periodos calculados se presentan en la **Tabla 10** y en la **Figura 57** la correlación estimada con el espesor de sedimento aproximado del sitio de cada estación.

En general, se puede observar que la zona de cerros tiene periodos menores a 0.4 s; zona de piedemonte entre 0.4 y 0.65 s; la zona lacustre entre 1.05 y 4.25 s y la zona aluvial entre 0.85 y 1.8 s (ver **Figura 58**).

BOG BOSITIVA GOBIERNO DE LA CIUDAD

Código	Nombre	Periodo Natural (s)	Profundidad Depósito (m)
CEING	ESC. COLOMBIANA DE INGENIERIA	1.95	110
CUSAL	UNIVERSIDAD DE LA SALLE	0.65	30
CBOSA	COLEGIO FERNANDO MAZUERA	0.95	70
CCORP	UNIVERSIDAD CORPAS	2.7	220
CUAGR	UNIAGRARIA Sup.	2.2	130
CUSAQ	COLONIA ESCOLAR DE USAQUEN	0.45	30
CESCA	ESCUELA DE CABALLERIA	0.3	0
CBANC	BANCO DE LA REPUBLICA	1.05	60
CTVCA	T.V. CABLE	0.25	0
CFLOD	PARQUE LA FLORIDA	4.25	500
CAVIA	AVIANCA	2.95	300
CFONT	PLANTA DE BOMBEO FONTIBON	3.2	270
CNIÑO	CENTRO DE ESTUDIOS DEL NINO	2.45	220
CJABO	JARDÍN BOTANICO	2.9	260
CBART	COLEGIO SAN BARTOLOME	0.3	0
CUNMA	UNIVERSIDAD MANUELA BELTRAN	0.2	10
CCITE	CITEC	1.8	200
CTIEM	CLUB EL TIEMPO	3.25	375
CTIMI	PARQUE TIMIZA	1.65	160
CTUNA	PARQUE TUNAL	0.9	80
CMARI	BOMBEROS MARICHUELA	0.4	25
CSMOR	COLEGIO SIERRA MORENA	0.3	0
CTEJE	ESCUELA DE TEJEDORES	0.85	80
CVITE	TANQUES DE VITELMA	0.15	0
CGRAL	ESCUELA GENERAL SANTANDER Sup.	1.1	100
CCKEN	COL-KENNEDY	1.65	220
CBOG1	INGEOMINAS Sup.	2.1	180

Tabla 10. Periodo natural del depósito a partir de las relaciones espectrales obtenidas del sismo de Quetame

Figura 58. Distribución del periodo natural del depósito a partir del sismo de Quetame 24/05/2008

4.3 SÍNTESIS DE RESULTADOS

A partir de los análisis de los espectros de respuesta de todos los registros obtenidos a la fecha se destacaron los siguientes aspectos generales:

- Zona de cerros: Los periodos dominantes de las señales registradas están entre 0.2 y 0.4 s, a excepción de la estación CSMOR, que la señal que registró tiene un periodo dominante entre 0.5 y 1 s, se presentan relaciones Sa/Ao hasta de 5 veces. Se tuvo en esta zona amplificaciones de 2 a 4 veces la señal en periodos entre 0.1 y 0.7 y de-amplificaciones de los periodos mayores a 2 segundos.
- Zona de piedemonte: Los periodos dominantes de las señales registradas en el piedemonte están entre 0.4 y 0.7 s con relaciones Sa/Ao hasta de 4 veces, las estaciones del piedemonte norte de la ciudad CUSAL y CUSAQ presentaron para el sismo de Quetame respuestas espectrales considerables en altos periodos (1.5 a 2.5 s) con relaciones Sa/Ao hasta de 2.5 veces. En términos generales se amplifican las señales de 4 a 6 veces tanto para los periodos bajos entre 0.5 y 0.8 como para periodos altos de 2 segundos en la zona norte.
- Zona lacustre: Las señales provenientes del Nido de Bucaramanga presentaron periodos dominantes de 0.5 s y las señales de las fuentes regionales, como el sismo de Quetame, presentaron tres periodos dominantes, a 0.6, 1.1 y 2.3 s. Las relaciones Sa/Ao para periodos bajos (menor a 1 s) son de alrededor de 3 a 4 veces y para los periodos altos (mayor a 1 s) están entre 4 y 6. Las amplificaciones estimadas son del orden de 4 a 10 veces entre 1 a 4 s de periodo. No hay un solo periodo característico para toda la zona, la respuesta de cada estación está dominada en el intervalo de periodos altos. Sin embargo, si se asocia cada estación al espesor del depósito se ve claramente la correspondencia entre el periodo y el espesor de suelo, de manera que las estaciones con espesor de 50 m (CBANC) tienen un periodo natural de 1.05 s y la estación con 500 m de sedimento (CFLOD) es de 4.25 s.
- Zona Aluvial: Los periodos dominantes de las señales registradas están entre 0.5 y 1.0 s, con relaciones Sa/Ao entre 3 y 4 veces, sin embargo las estaciones más alejadas de los cerros o cercanas a la zona lacustre (con mayores espesores de sedimentos) presentan relaciones Sa/Ao inferiores a 2 veces a periodos altos, entre 2 y 2.5 s. Las amplificaciones son del orden de 3 a 4 veces entre 0.8 y 1.9 s de periodo, se aprecia que las estaciones más cercanas a los cerros presentan mayores amplificaciones y las mas lejanas un poco menos, es decir que similar a la zona lacustre hay relación de las respuestas con el espesor de sedimentos.

CAPITULO 5

5 ESTIMACIÓN DE PROPIEDADES DINÁMICAS Y CALIBRACIÓN DE MODELOS DE RESPUESTA EN LOS SITIOS CON DOWN HOLE

En el presente capítulo se presentará la evaluación de algunas propiedades dinámicas de los depósitos de la ciudad de Bogotá a partir de los registros obtenidos por la RAB junto con la calibración obtenida de los modelos de respuesta unidimensional en los sitios con Down Hole. Particularmente se presentarán los análisis realizados para la estimación de la velocidad de onda de corte - Vs y amortiguamiento viscoso o mínimo - Dmin con base en los datos del sismo del municipio de Quetame y el mapa de espesores de sedimento; para la calibración de los modelos de respuesta unidimensionales de los sitios con Down Hole se tiene en cuenta la Vs y Dmin estimados, modelos de degradación de las propiedades dinámicas recientemente propuestos y los perfiles estratigráficos de los sitios estudiados.

5.1 PROPIEDADES DINÁMICAS

Las propiedades que influyen en la respuesta sísmica de un depósito de suelo son la velocidad de onda de corte, el amortiguamiento viscoso del material, la degradación del módulo de corte, la relación de amortiguamiento histerético, las condiciones de frontera y los efectos topográficos. Por otro lado, los niveles de aceleración registrados por la RAB son bajos, por lo que es solamente posible estudiar las propiedades dinámicas a bajas deformaciones, como son la velocidad de onda cortante y el amortiguamiento viscoso o mínimo; puesto que es necesario contar con registros de mayor intensidad para estimar el comportamiento no lineal, representado por la degradación del módulo y aumento del amortiguamiento histerético.

Por lo anterior, en la calibración de los modelos de respuesta unidimensional de los sitios con Down Hole se emplearán curvas de degradación y amortiguamiento recomendadas en los estudios recientes. Estos modelos incorporan el concepto de amortiguamiento viscoso y la variación de las propiedades dinámicas como degradación y amortiguamiento en función del confinamiento, aspectos que no se tuvieron en cuenta anteriormente en los estudios realizados.

5.1.1 Velocidad de onda cortante

Uno de los parámetros más importantes y sensibles en la evaluación de la respuesta de sitio es la velocidad de onda de corte, por lo que se aplicaron dos métodos para estimar el orden de magnitud como se presenta a continuación.

Método 1

El primer método consistió en que a partir del periodo fundamental y el espesor del depósito se calcula la velocidad promedio aproximada mediante la siguiente expresión:

$$\overline{Vs} \approx \frac{4 \cdot H}{T_f} \tag{1}$$

Donde

 \overline{Vs} : Velocidad de onda promedio del depósito hasta la roca

H : Espesor del depósito hasta la roca

T_{f} : Periodo fundamental del depósito (primer modo)

Método 2

El segundo método consistió en medir directamente de los registros de las ondas de corte (SH) del sismo del municipio de Quetame el tiempo que dura la onda de corte desde el sensor en profundidad hasta el sensor en superficie, para este ejercicio se escogieron las ventanas de tiempo inicial de la señal, buscando la correspondencia entre los pulsos de la señal en profundidad (DH) y su respuesta en superficie (Sup), los acelerogramas de las estaciones de la Universidad Agraria – CUAGR, Escuela General Santander – CGRAL e INGEOMINAS – CBOG1 se presentan de la **Figura 59** a la **Figura 61**.

Figura 59. Acelerograma en profundidad y superficie CUAGR

Figura 61. Acelerograma en profundidad y superficie CBOG1

Es importante mencionar que los valores obtenidos por este método son aproximados, puesto que en superficie los diferentes tipos de ondas pueden superponerse y la determinación de una onda clara y completa es difícil. Sin embargo, los resultados calculados por el método 2 son similares a los obtenidos por el método 1 como se puede observar en la **Tabla 11**.

CODIGO	NOMBRE GRUPO T fundamental (s)		H Profundidad (m)	Vs promedio metodo 1 (m/s)	Vs promedio metodo 2 (m/s)	
CEING	ESCUELA COLOMBIANA DE INGENIERIA	LACUSTRE	1.95	110	226	(11/0)
CUSAL	UNIVERSIDAD DE LA SALLE	PIEDEMONTE	0.65	30	185	
CBOSA	COLEGIO FERNANDO MAZUERA	ALUVIAL	0.95	70	295	
CCORP	UNIVERSIDAD CORPAS	LACUSTRE	2.7	220	326	
CUAGR	UNIAGRARIA	LACUSTRE	2.2	130	236	249
CPSUB	ACADEMIA DE POLICIA	CERRO	0.45	0		
CUSAQ	COLONIA ESCOLAR DE USAQUEN	PIEDEMONTE	0.45	30	267	
CESCA	ESCUELA DE CABALLERIA	CERRO	0.3	0		
CBANC	BANCO DE LA REPUBLICA	LACUSTRE	1.05	60	229	
CTVCA	T.V. CABLE	CERRO	0.25	0		
CFLOD	PARQUE LA FLORIDA	LACUSTRE	4.25	500	471	
CAVIA	AVIANCA	LACUSTRE	2.95	300	407	
CFONT	PLANTA DE BOMBEO FONTIBON	LACUSTRE	3.2	270	338	
CNIÑO	CENTRO DE ESTUDIOS DEL NINO	LACUSTRE	2.45	220	359	
CJABO	JARDÍN BOTANICO	LACUSTRE	2.9	260	359	
CBART	COLEGIO SAN BARTOLOME	CERRO	0.3	0		
CUNMA	UNIVERSIDAD MANUELA BELTRAN	CERRO	0.2	0		
CDIOS	HOSPITAL SAN JUAN DE DIOS	PIEDEMONTE	0.65	40	246	
CCITE	CITEC	ALUVIAL	1.8	200	444	
CTIEM	CLUB EL TIEMPO	LACUSTRE	3.25	375	462	
CTIMI	PARQUE TIMIZA	ALUVIAL	1.65	160	388	
CTUNA	PARQUE TUNAL	ALUVIAL	0.9	80	356	
CARTI	ESCUELA DE ARTILLERIA	PIEDEMONTE	0.4	30	300	
CMARI	BOMBEROS MARICHUELA	PIEDEMONTE	0.4	30	300	
CSMOR	COLEGIO SIERRA MORENA	CERRO	0.3	0		
CTEJE	ESCUELA DE TEJEDORES	ALUVIAL	0.85	80	376	
CVITE	TANQUES DE VITELMA	CERRO	0.15	0		
CLAGO	COLEGIO LAUREANO GOMEZ	LACUSTRE	2.25	175	311	
CGRAL	ESCUELA GENERAL SANTANDER	ALUVIAL	1.1	100	364	334
CCKEN	COL-KENNEDY	ALUVIAL	1.65	220	533	
CBOG1	INGEOMINAS	LACUSTRE	2.1	180	343	368

Tabla 11. Valores estimados de la velocidad de onda promedio del depósito hasta la roca

Los resultados anteriores representan la velocidad de onda cortante promedio tomando todo el depósito hasta la roca, de allí se puede establecer una correlación entre el espesor - H y la Velocidad de onda cortante promedio - Vs promedio para las zonas lacustre y aluvial, en el caso de la zona de piedemonte no hay una tendencia clara por que estos depósitos son de poco espesor y muy heterogéneos, de manera que las estaciones del piedemonte norte se correlaciona más con la zona lacustre, pero los piedemontes del centro y sur se asemejan más a la zona aluvial, como se presenta en la **Figura 62**.

Figura 62. Relación entre el espesor del depósito y la velocidad de onda cortante promedio

A partir de los datos se puede establecer la siguiente expresión para relacionar el espesor del depósito y la velocidad de onda cortante promedio:

$$\overline{Vs} = A \cdot H^B \tag{2}$$

Donde *A* tiene un valor de 37.1 para la zona lacustre y de 74.8 para la zona aluvial y *B* es 0.41 para la zona lacustre y 0.35 para la zona aluvial.

Para la calibración de los modelos no solo basta con saber la velocidad de onda promedio del perfil de análisis, es necesario contar con los valores de velocidad de onda cortante de cada una de las capas que conforman el perfil estratigráfico hasta la roca, para lo cual se debe descomponer la velocidad de onda cortante promedio como la sumatoria ponderada de las velocidades de onda cortante de cada capa - Vs_i por el espesor de cada capa h_i que la componen mediante la siguiente expresión:

$$\overline{Vs} = \frac{\sum Vs_i \cdot h_i}{\sum h_i}$$
(3)

De acuerdo con Rodríguez (2007) la velocidad de onda cortante de un estrato se puede expresar en función de una constante A que depende del tipo de material, la profundidad media Z del estrato y del exponente b para tener en cuenta el cambio por el aumento del confinamiento como se presenta en la siguiente ecuación:

$$Vs_i = A \cdot Z^b \tag{4}$$

Realizando un retro-análisis con los valores promedios de la velocidad de onda cortante para cada sitio de la RAB y teniendo en cuenta un perfil estratigráfico simplificado se obtienen las constantes para estimar la velocidad de onda de cada estrato en función de la profundidad como se resume en la **Tabla 12**.

Material	а	b
Arcillas blandas (F. Sábana)	90 -110	0.175
Arcillas orgánicas (Turbas)	70 - 90	0.175
Arcillas arenosas(F. Subachoque)	160 - 180	0.175

Tabla 12. Valores estimados de a y b para los tipos de suelos generales

Dado que la ecuación (4) no es dimensionalmente correcta se puede expresar de acuerdo con Díaz (2007) en términos del esfuerzo efectivo medio del estrato - σ'_0 normalizando por la presión atmosférica – Pa elevado a un exponente *b* por una velocidad de onda de corte de referencia Vs_{ref} que depende del tipo de material sometido a un esfuerzo efectivo promedio igual a la Pa, de la siguiente manera:

$$Vs_i = V_{ref} \cdot \left(\frac{\sigma_0'}{Pa}\right)^b$$
 (5)

Los valores estimados de "V_{ref}" para diferentes tipos de suelos para la ecuación anterior se ilustran en la Tabla 13.

Material	Vref (m/s)	b
Arcillas blandas con Wn entre 80 y 150%	150 - 170	0.175
Arcillas limosas firmes con Wn entre 40 y 80%	160 – 180	0.175
Arenas limosas o arcillas arenosas con Wn < 40%	265 - 285	0.175
Arcillas orgánicas Turba con Wn > 150	130 - 150	0.175

Tabla 13. Valores estimados de Vsref y b para los tipos de suelos generales

En la **Figura 63** se presenta el perfil de velocidad calculado por las expresiones (4) y (5) en el sitio de la estación de INGEOMINAS y en la **Tabla 14** se resume los valores promedios de velocidad de onda cortante calculados para el perfil de análisis por todos los métodos presentados.

	Vs
Método	promedio
	(m/s)
A partir del periodo fundamental	343
A partir del registro en DH y Sup	368
Ponderado en función de la profundidad	309
Ponderado en función del confinamiento	309

Tabla 14. Velocidad de onda promedio del perfil CBOG1 estimada por diferentes métodos

En general se observa que en el sitio de la estación CBOG1 (INGEOMINAS) la velocidad de onda promedio del depósito de 180 m de espesor se encuentra entre 300 y 360 m/s, presentando valores para la formación Sábana entre 120 a 200 m/s hasta 60 m de profundidad, para la transición entre la formación Sábana y Subachoque entre 200 a 350 m/s hasta los 80 m de profundidad y para la formación Subachoque aumenta de 350 a 425 m/s hasta los 180 m, aunque hay unas capas de arcillas a los 160 m con velocidades de 220 m/s.

No Capa	Material	DESCRIPCION GEOTECNICA	Tramo hasta (m)	wn (%)	Peso unitario KN/m ³	Modelo de Velocidad de Onda de Corte 3 Vs (m/s)								
		Arcilla ligeramente					0	1	00	200	300	40	00	500
1	CH-MH	limosa, gris.	5	42.8	17.7		0 +							
2	СН	Arcilla gris rosado palido	7	79	16.2									
3	СН	Arcilla, gris marrón.	12	127	13.7				¥					
4	СН	Arcilla, gris oliva.	17	119.2	13.5	2	0 -							
5	СН	Arcilla, marrón.	21	115.9	14.0									
6	PT	Turba	23	300.0	9.8									
0		Arcilla marrón amarillento	20	000.0	0.0	4	0							
7	СН	oscuro	30	87.2	14.2		-							
8	CI	Arena arcillosa fina- media marrón amarillo	38	28.3	19.1					<				
0		Arcilla limosa marrón	00	20.0	10.1	6	0			>				
a	СН	amarillento oscuro	44 5	51.9	17.2									
0	011	Arcilla gris oliva turba	-+0	01.0	17.2	Ê								
10	СН	arcillosa negra.	52.5	81.1	15.2		0 -					_))_		_
11	PT	Turba	58	120	13.1	ida								
12	CH	Arcilla arenosa gris oliva	67	37	18.6	P						1		
13	PT	Turba	69	120	12.8	5 10	o 🗕							
		Intercalaciones de arena				<u>ک</u>	-					1		
14	CL	y arcilla	80	26	19.1							٦.		
	~	Intercalaciones de arena				12	0							
15	CL	y arcilla	100	25	19.1									
	~	Intercalaciones de arena												
16	CL	y arcilla	120	20	19.1	14	^						N	
47	~	Intercalaciones de arena		07	40.4	19	۳T						5	
17	CL	y arcilla	140	27	19.1								-	
18	CI	intercalaciones de arena	152	27	19.1	16								
19	CH	Arcilla gris y marrón	157	29	17.7	1 10			<u> </u>	7		_		
20	PT	Turba	159	120	12.8			→ _ Vs	Ecuación	4		_	-	
		Intercalaciones de arena	.50	.20					Ecuación	5				
21	CI	v arcilla	177	40	19.1	18	о –							

Figura 63. Modelo de perfil de velocidad de onda de corte estación CBOG1

5.1.2 Amortiguamiento viscoso o mínimo

El amortiguamiento viscoso o mínimo se determina a niveles bajos de deformación, se puede estimar para señales de baja energía en la parte final del registro, donde se presume que el depósito está en vibración libre. El método consiste en seleccionar una ventana de tiempo donde se aprecie el decaimiento de la intensidad de la señal, en este intervalo se aplican las expresiones para calcular el amortiguamiento a partir del decaimiento logarítmico de los ciclos de carga en vibración libre (Ishihara, 1996).

$$D = \frac{\Delta}{2 \pi}$$
 (6)

$$\Delta = \frac{1}{N-1} \log \left(\frac{a_1}{a_N} \right) \tag{7}$$

Donde *D* es el amortiguamiento, Δ es la pendiente de la relación entre el logaritmo de la amplitud *a* y el número del ciclo *N*.

Con base en los registros de las ondas de corte (SH) del sismo del municipio de Quetame en las estaciones con DH se escogieron las ventanas de tiempo del final de la señal para determinar la relación del logaritmo de la amplitud con el número de ciclos. Los acelerogramas de las estaciones de la Universidad Agraria – CUAGR, Escuela General Santander – CGRAL e INGEOMINAS – CBOG1 se presentan de la **Figura 64** a la **Figura 66** junto con los datos tenidos en cuenta para calcular el amortiguamiento.

BOOG BOSTOTA

Figura 64. Acelerograma en superficie para estimar amortiguamiento CUAGR

Figura 65. Acelerograma en superficie para estimar amortiguamiento CGRAL

Figura 66. Acelerograma en superficie para estimar amortiguamiento CBOG1

Es importante mencionar que los valores obtenidos por este método son aproximados, puesto que en superficie los diferentes tipos de ondas pueden superponerse y la determinación del decaimiento de la onda es difícil. Sin embargo, los resultados calculados indican valores cercanos al 1% para la zona lacustre y del 0.6% para la zona aluvial como se puede observar en la **Tabla 15**.

Estación	Δ	Amortiguamiento D (%)
CUAGR	0.061	0.97
CGRAL	0.039	0.61
CBOG1	0.058	0.92

Tabla 15.	Valores estimados	de amortigua	miento mínimo
-----------	-------------------	--------------	---------------

5.2 MODELOS DE DEGRADACIÓN DEL MODULO Y AMORTIGUAMIENTO RECOMENDADOS

Los modelos de degradación del módulo y amortiguamiento se emplean para evaluar el comportamiento no lineal del suelo, por lo cual son fundamentales en la evaluación de la respuesta sísmica del depósito cuando es sometido a un sismo de gran energía. Como hasta la fecha no se ha registrado en la RAB un evento con la energía suficiente para estudiar el comportamiento no lineal de los depósitos, se optó por emplear para los análisis de respuesta sísmica unidimensional dos modelos recientemente desarrollados. Los modelos seleccionados son compatibles con las mediciones realizadas a bajas deformaciones, por que tienen en cuenta el efecto del confinamiento en las propiedades dinámicas como se demostró en el numeral 5.1.1 para la velocidad de onda, e involucran la variación del amortiguamiento mínimo como se ilustró en el numeral 5.1.2. A continuación se resumen de manera general los trabajos de Zhang et al. (2005) y Díaz-Parra (2007).

5.2.1 Zhang et al. (2005)

El modelo no lineal propuesto por Zhang et al., (2005) consideró los datos de laboratorio de Columna Resonante y Corte Torsional, resultado de 78 muestras obtenidas de tres áreas en Carolina del Sur: Charleston, Savannah River Site y Richard B. Russell Dam. Además, los ensayos de Columna Resonante y Corte Torsional se obtuvieron de 44 muestras de Carolina del Norte y de Alabama. Empleó un modelo hiperbólico del siguiente tipo:

Donde γ_r es la deformación de referencia y α el parámetro de curvatura. Los valores de α y de γ_r que proporcionan valores apropiados al modelo están determinados por múltiples regresiones. Solo datos con G/G_{máx} medidos hasta 0.75 o menores, son usados en los análisis de regresión para reducir errores en las extrapolaciones. Debido a que los valores de γ_r pueden variar significativamente con σ'_m , las siguientes relaciones fueron asumidas:

$$\alpha = 0.0021PI + 0.834$$

$$\gamma_r = \gamma_{r1} \left(\frac{\sigma'_m}{P_a} \right)^k$$
(10)

Donde γ_{r_1} es la deformación de referencia para un esfuerzo efectivo de confinamiento de 100 kPa; P_a es el esfuerzo de referencia de 100 kPa; *PI* es el índice de plasticidad y k corresponde al exponente de corrección de esfuerzo. Para depósitos cuaternarios el autor recomienda las siguientes correlaciones para los anteriores parámetros:

$$k = 0.316e^{-0.0142PI} \tag{11}$$

$$\gamma_{r1} = 0.0011PI + 0.0749 \tag{12}$$

La ecuación general de amortiguamiento adoptada por el autor es:

$$D = f(G/G_{MAX}) + D_{MIN}$$
(13)

Donde $f(G/G_{max})$ es la función normalizada de módulos cortantes y D_{min} corresponde al amortiguamiento a bajas deformaciones, para determinar el D_{min} el autor solo empleó los datos de corte torsional porque la frecuencia de la carga cíclica (0.5Hz) y el número de ciclos de carga (10) usados en las pruebas son muy similares a los valores típicos de cargas sísmicas; mientras que para las pruebas de columna resonante son mucho más grandes y sobreestiman los amortiguamientos mínimos. Para depósitos cuaternarios el autor recomienda las siguientes correlaciones para los anteriores parámetros:

$$f(G/G_{max}) = 10.6(G/G_{max})^2 - 31.6(G/G_{max}) + 21$$
(14)

$$D_{min} = D_{min1} (\sigma'_m / P_a)^{-k/2}$$
(15)

$$D_{\min 1} = 0.008PI + 0.82 \tag{16}$$

Se aprecia en el modelo anterior que los factores más importantes para modelar los resultados de los ensayos son el esfuerzo de confinamiento y el índice de plasticidad (PI). Comparaciones entre estas ecuaciones y las curvas publicadas por

otros autores demuestran según Zhang que "el efecto del esfuerzo de confinamiento es más significativo y que el efecto del Índice de plasticidad (PI) es menos significativo en el modelo del comportamiento dinámico del suelo".

5.2.2 Díaz-Parra (2007)

El modelo propuesto por Díaz-Parra se determinó a partir de una base de datos experimental de 35 pruebas triaxiales cíclicas realizadas sobre la arcilla blanda de la Ciudad Universitaria en Bogotá. Con base en las formulaciones de Stokoe (2004) y Matasovic (1993) se calcularon los coeficientes y simplificaron algunas de las ecuaciones para el caso de las arcillas de Bogotá. A continuación se presenta la formulación recomendada para la modelación dinámica de arcillas blandas.

La curva de degradación se adoptó a partir del modelo hiperbólico extendido modificado de Stokoe (2004) que está dado por la siguiente expresión:

Donde *s* es un parámetro de ajuste que define la ductilidad del material, γ es la deformación cortante de referencia que según los análisis de esta investigación se determina mediante la siguiente ecuación:

$$\gamma_{ref} = \left(c \cdot e_0\right) \cdot \left(\frac{\sigma_0}{Pa}\right)^m \tag{18}$$

Donde *c* es la deformación de referencia para e_0 igual a uno y a una presión atmosférica (Pa) y *m* es el número exponente.

El amortiguamiento fue uno de las parámetros con mayor dispersión en los ensayos, por ello se analizó cuál de los modelos se ajustaba mejor al comportamiento medido en las pruebas, destacándose que las ecuaciones de Stokoe (2004) son las más acertadas para el intervalo de medianas a altas deformaciones y combinado con las recomendaciones de Park et al., (2002) para bajas deformaciones que considera el comportamiento viscoso y simplifica el problema dejándolo independiente de la frecuencia; finalmente se recomiendan las siguientes expresiones:

$$D = F \cdot D_{Ma \sin g} + D_{\min} \tag{19}$$

$$F = \alpha \left(\frac{G}{G_{\text{max}}}\right)^{\beta}$$
(20)

$$D_{Masing} \approx 33 \cdot \left(1 - \frac{G}{G_{max}}\right) \gamma < 1\%$$
 (21)

$$D_{\min} = \delta \cdot \left(\frac{\sigma_0'}{Pa}\right)^{-\eta}$$
(22)

Donde D_{Masing} es el amortiguamiento histeretico según Reyla Masing (1923) α es un parámetro de ajuste, β es un exponente ajuste, δ es el amortiguamiento mínimo de referencia a una presión atmosférica, y η es el número exponente del amortiguamiento mínimo.

Las constantes y parámetros de las expresiones del modelo planteado para las arcillas blandas de Bogotá se resumen en la Tabla 16.

Parámetro	Signo	Unidad	Valor	
Número exponente	m	-	0.35	
Parámetro de ajuste que define la ductilidad del material	S	-	0.919	
Deformación de referencia para e ₀ = 1.0 y Pa	С	%	0.0756	
Parámetro de ajuste del amortiguamiento	α	%	0.62	
Exponente ajuste del amortiguamiento	β	-	0.1	
Amortiguamiento mínimo de referencia a Pa	δ	%	1.0	
Número exponente amortiguamiento mínimo	η	-	0.3	

Tabla 16. Resumen de parámetros recomendados para material lacustre

Los parámetros recomendados para las formaciones aluviales se obtuvieron a partir de los ensayos de laboratorio realizados por INGEOMINAS en el sector del Reactor Nuclear (INGEOMINAS, 2006) y en la Microzonificación Sísmica de Cali (Díaz-Parra et al., 2006), a continuación se resumen los parámetros recomendados en la **Tabla 17**.

Parámetro	Signo	Unidad	Valor
Número exponente	m	-	0.35
Parámetro de ajuste que define la ductilidad del material	S	-	0.85
Deformación de referencia para $e_0 = 1.0$ y Pa	С	%	0.0756
Parámetro de ajuste del amortiguamiento	α	%	0.62
Exponente ajuste del amortiguamiento	β	-	0.1
Amortiguamiento mínimo de referencia a Pa	δ	%	0.5
Número exponente amortiguamiento mínimo	η	-	0.3

Tabla 17. Resumen de parámetros recomendados para material aluvial

El procedimiento para obtener las curvas de degradación del módulo y amortiguamiento se resume en: determinar la relación de vacíos y estado de esfuerzos promedio del material analizado, calcular los parámetros dinámicos γ_{ref} y Dmin mediante las expresiones recomendadas y calcular los valores de degradación del módulo (G/Go) y amortiguamiento (D) para los niveles de deformación cortante de interés.

5.3 CALIBRACIÓN DE LOS MODELOS DE RESPUESTA EN LOS SITIOS CON DOWN HOLE

El proceso de calibración de los perfiles geotécnicos de los sitios con Down Hole consistió en modificar gradualmente las velocidades de onda cortante de referencia acuerdo con su intervalo de variación estimado, de manera tal que la respuesta del modelo lograra reproducir, en términos de amplitud y periodos dominantes, la respuesta medida en superficie en la estación.

A continuación se presentaran los resultados obtenidos a partir de retro-análisis realizados en los tres sitios con Down Hole, uno en el sector norte de la ciudad en la Universidad Agraria (CUAGR), donde predominan los materiales muy blandos, en el sector central de la ciudad en INGEOMINAS (CBOG1), con predominio de arcillas blandas con intercalaciones de suelos aluviales, y al sur de la ciudad en la Escuela General Santander (CGRAL), donde predominan los suelos aluviales con intercalaciones de capas orgánicas.

Es importante mencionar que en el caso de la estación CGRAL la señal del Down Hole presenta efectos de sitio importantes, es decir que no corresponde exactamente a la roca profundad, por lo que en este sitio se encontró que modelando la señal del Down Hole a los 55 m de profundidad se hallaban resultados satisfactorios.

5.3.1 Universidad Agraria – CUAGR

En la **Tabla 18** se ilustra el perfil geotécnico analizado y en la **Figura 67** la variación con la profundidad de las propiedades dinámicas.

No Capa	Material	DESCRIPCION GEOTECNICA	Tramo desde (m)	Tramo hasta (m)	wn (%)	eo	IP	Peso unitario gr/cm ³	Vref m/s	Vs modelado m/s
1	СН	Arcilla	0	5	100	2.494	125	1.55	158	124
2	СН	Arcilla	5	10	160	3.934	200	1.40	140	127
3	СН	Arcilla	10	17	160	3.934	200	1.40	140	132
4	СН	Arcilla	17	24	150	3.694	195	1.45	140	138
5	СН	Arcilla	24	28	120	2.974	150	1.50	140	142
6	OH	Arcilla orgánica	28	30	200	4.894	265	1.10	140	144
7	СН	Arcilla	30	35	150	3.694	195	1.40	140	145
8	CL	Arcilla arenosa	35	37.5	80	2.014	100	1.60	158	166
9	СН	Arcilla	37.5	45	130	3.214	170	1.50	140	150
10	СН	Arcilla	45	56.5	100	2.494	125	1.55	158	176
11	СН	Arcilla	56.5	65	60	1.534	70	1.65	158	182
12	ОН	Arcilla orgánica	65	67	160	3.934	210	1.30	140	163
13	CL	Arcilla arenosa	67	85.5	50	1.294	40	1.75	158	190
14	СН	Arcilla	85.5	97	50	1.294	55	1.70	158	198
15	SC	Arena fina	97	115	30	0.814	25	1.75	265	342
16	SC	Arena fina	115	130	25	0.694	20	1.80	265	353

Tabla 18. Perfil geotécnico analizado en CUAGR

Figura 67. Variación de las propiedades dinámicas adoptadas en CUAGR

En la Figura 68 se presenta los resultados obtenidos para el sismo de Quetame en términos de aceleración espectral y relación espectral.

BEC BESTELLA GOBIERNO DE LA CIUDAD

Figura 68. Espectro de respuesta y relaciones espectrales medidas y modeladas en CUAGR

5.3.2 INGEOMINAS – CBOG1

En la **Tabla 19** se ilustra el perfil geotécnico analizado y en la **Figura 69** la variación con la profundidad de las propiedades dinámicas.

No	Material	ial DESCRIPCION GEOTECNICA	Tramo	Tramo		ео	IP	Peso unitario	Vref m/s	Vs
Cana			desde	e hasta v	wn (%)					modelado
Capa			(m)	(m)				gr/cm ³		m/s
1	CH-MH	Arcilla ligeramente limosa, gris.	0	5	43	1.10	45	1.80	170	137
2	СН	Arcilla, gris rosado palido.	5	7	79	1.90	92	1.65	170	157
3	СН	Arcilla, gris marrón.	7	12	127	2.91	151	1.40	170	161
4	СН	Arcilla, gris oliva.	12	17	119	2.88	149	1.38	170	166
5	СН	Arcilla, marrón.	17	21	116	2.78	143	1.43	170	169
6	PT	Turba.	21	23	300	5.50	270	1.00	150	151
7	СН	Arcilla, marrón amarillento oscuro.	23	30	87	2.70	122	1.45	170	174
8	CL	Arena arcillosa fina-media, marrón amarillo.	30	38	28	0.96	17	1.95	285	305
9	CH	Arcilla limosa, marrón amarillento oscuro.	38	44.5	52	1.32	46	1.75	175	196
10	СН	Arcilla, gris oliva, turba arcillosa negra.	44.5	52.5	81	2.10	104	1.55	175	201
11	PT	Turba	52.5	58	120	2.95	155	1.34	150	175
12	СН	Arcilla arenosa gris oliva	58	67	37	1.00	38	1.90	175	208
13	PT	Turba	67	69	120	2.95	155	1.30	150	182
14	CL	Intercalaciones de arena y arcilla	69	80	26	1.05	23	1.95	285	352
15	CL	Intercalaciones de arena y arcilla	80	100	25	1.05	22	1.95	285	368
16	CL	Intercalaciones de arena y arcilla	100	120	20	0.95	14	1.95	285	384
17	CL	Intercalaciones de arena y arcilla	120	140	27	1.05	24	1.95	285	398
18	CL	Intercalaciones de arena y arcilla	140	152	27	1.05	0	1.95	285	408
19	CH	Arcilla gris y marrón	152	157	29	0.90	27	1.80	175	253
20	PT	Turba	157	159	120	2.00	155	1.30	150	218
21	CL	Intercalaciones de arena y arcilla	159	180	40	1.15	42	1.95	285	419

Tabla 19. Perfil geotécnico analizado en CBOG1

Figura 69. Variación de las propiedades dinámicas adoptadas en CBOG1

5.3.3 Escuela General Santander – CGRAL

En la **Tabla 20** se ilustra el perfil geotécnico analizado y en la **Figura 71** la variación con la profundidad de las propiedades dinámicas.

No Capa	Material	DESCRIPCION GEOTECNICA	Tramo desde (m)	Tramo hasta (m)	wn (%)	eo	IP	Peso unitario gr/cm ³	Vref m/s	Vs modelado m/s
1	SC	Arena arcillosa	0	4	25	0.694	10	1.75	285	190
2	SC	Arena arcillosa	4	9	25	0.694	10	1.75	285	233
3	SC	Arena arcillosa	9	14	25	0.694	10	1.75	285	257
4	CH	Arcilla	14	16	100	2.494	120	1.40	158	149
5	CL	Arcilla arenosa	16	21	40	1.054	20	1.70	265	257
6	CL	Arcilla arenosa	21	25.5	40	1.054	20	1.70	265	268
7	OH	Arcilla orgánica	25.5	30	200	4.894	250	1.10	140	144
8	CL	Arcilla arenosa	30	35	40	1.054	20	1.80	265	278
9	CL	Arcilla arenosa	35	40	40	1.054	20	1.80	265	287
10	SP	Arena	40	45	20	0.574	0	1.85	285	317
11	SP	Arena	45	50	20	0.574	0	1.85	285	325
12	CL	Arcilla arenosa	50	53	20	0.574	20	1.85	265	308
13	CH	Arcilla	53	55	80	2.014	120	1.20	158	185
14	CL	Arcilla arenosa	55	100	20	0.574	20	1.85	285	358

Tabla 20. Perfil geotécnico analizado en CGRAL

Figura 71. Variación de las propiedades dinámicas adoptadas en CGRAL

En la Figura 72 se presenta los resultados obtenidos para el sismo de Quetame en términos de aceleración espectral y relación espectral.

BOOG POSTOTA GOBIERNO DE LA CIUDAD

Figura 72. Espectro de respuesta y relaciones espectrales medidas y modeladas en CGRAL

5.3.4 Síntesis de resultados

De los resultados de la calibración de los modelos se destaca los siguientes aspectos:

- En general se logra reproducir bastante bien la respuesta espectral en términos de amplitud y periodo fundamental, sin embargo en la zona lacustre se obtiene mayores amplificaciones para periodos menores a 0.7 segundos y ligeramente menores amplificaciones de los periodos mayores a 1 segundo. En la zona aluvial los resultados exageran la respuesta espectral hacia los 1.2 segundos, logrando de todos modos muy buena calibración en las demás ordenadas espectrales.
- Los resultados obtenidos aplicando los modelos de comportamiento dinámico de Zhang son ligeramente superiores a los obtenidos mediante el modelo de Díaz-Parra.
- Dado que se tratan de modelos de respuesta unidimensionales que tienen en cuenta efectos adicionales como los
 producidos por las ondas superficiales y la forma del basamento rocoso, los resultados presentados en general no
 logran reproducir totalmente la respuesta espectral de los registros medidos que en alguna medida están influenciados
 por estos efectos de sitio complementarios.
- Se presenta en las zona lacustre grandes amplificaciones a periodos altos por efecto de los suelos blandos y la forma de la cuenca sedimentaria, en la zona aluvial se presentan amplificaciones menores con ausencia de picos pronunciados en las repuestas espectrales, lo cual se puede atribuir a que estos materiales degradan y amortiguan la señal de una manera significativa.

5.4 ESPECTROS DE RESPUESTA DE LAS SEÑALES DE DISEÑO EN LOS SITIOS CALIBRADOS

Una vez realizada la calibración de los sitios con Down Hole se procedió a modelar la respuesta sísmica a los niveles de amenaza sísmica recomendados en el proyecto de actualización de la microzonificación sísmica con cuatro de las señales recomendadas para definir el espectro de diseño, de este manera se empleó para la fuente cercana la señal "Coalinga a 0.19g", para la fuente regional "Deer Canyon a 0.16g" y para la fuente lejana las señales de "Xantinguis a 0.038g" y "México a 0.038g", los espectros de respuesta de las señales empleadas se illustran en la Figura 73.

Figura 73. Espectro de respuesta de señales de diseño modeladas

De la **Figura 74** a la **Figura 76** se presentan los espectros de respuesta y relaciones espectrales de las señales de diseño empleadas en los análisis para los 3 sitios calibrados y se comparan con los espectros de diseño del sitio de la Microzonificación Sísmica de Bogotá (1997) y con la propuesta preliminar de actualización de la Microzonificación (2008).

Figura 74. Espectro de respuesta y relaciones espectrales de señales de diseño en CUAGR

BODG BOSITIVA

Figura 75. Espectro de respuesta y relaciones espectrales de señales de diseño en CBOG1

67

BOOG BOOSTOTIA GOBIERNO DE LA CIUDAD

A partir de los resultados de las modelaciones de las señales de diseño se destacan los siguientes aspectos:

 Los espectros de respuesta de las señales de diseño empleadas en los presentes análisis tienen un contenido frecuencial dominante para las señales de la fuente cercana y regional en los periodos bajos y las señales de la fuente lejana en periodo alto. La señal del México tiene un contenido frecuencial al parecer demasiado alto para los 2 segundos de periodo, lo cual fue revisado por la SCG (2007) concluyendo que esta señal es particular de la zona de subducción de México y no debe emplearse para modelar la zona de subducción del Pacifico Colombiano, sin embargo

se presentan los resultados obtenidos con esta señal para poder ver la situación más critica y poder comparar los resultados con la microzonificación vigente donde emplearon esta señal.

- La respuesta espectral obtenida en cada uno de los sitios modelados demuestra que los espectros de diseño vigentes de la microzonificación sísmica no representan adecuadamente la respuesta espectral de estos sitios, la prolongada meseta de los espectros vigentes no corresponde a la respuesta espectral de estos depósitos, a pesar de emplearse la misma señal del sismo México a la cual se atribuyó tal efecto. Lo anterior ratifica que los aspectos más importantes en los análisis de respuesta de sitio son las propiedades y modelos de comportamiento dinámicos que se empleen, los cuales se obtienen con mayor confiabilidad a partir de la instrumentación sísmica.
- Los resultados obtenidos se ajustan bastante bien a los espectros de diseño de la propuesta de actualización que se dividen en fuente cercana "C" y fuente lejana "L". Sin embargo se observa que se deben realizar algunos ajustes menores como por ejemplo en la zona lacustre puede ser ligeramente mayor la amplificación en los periodos altos y en la zona aluvial puede ser menor la amplificación en los periodos cortos.
- En cuanto a las relaciones espectrales de las señales de diseño se observa en general amplificaciones en la zona lacustre hasta de 4 veces y para la zona aluvial de 3 veces. Es importante tener en cuenta que los niveles de amplificación son bajos en comparación con los medidos por la RAB porque los niveles de aceleración de diseño son muy superiores a los registrados en la RAB lo que ocasiona mayor degradación y amortiguamiento, por ende menores amplificaciones cuanto mayor sea la intensidad de la señal.
- Los resultados de los tres sitios calibrados con los registros del sismo Quetame son representativos del comportamiento dinámico de estos depósitos, puesto que se tuvo en cuenta en cada modelo las propiedades dinámicas estimadas a partir de los registros obtenidos, que son compatibles con las propiedades medidas in situ y reportadas en estudios recientes, y modelos de comportamiento dinámico recientemente desarrollados que tienen en cuenta el confinamiento, aspecto fundamental en la evaluación de la respuesta sísmica de depósitos profundos.

CAPITULO 6

6 CONCLUSIONES Y RECOMENDACIONES

6.1 CONCLUSIONES

A partir de los datos registrados por la RAB, se procedió a analizar la variación en superficie de algunos parámetros sísmicos y la respuesta espectral de los suelos que fuesen útiles para zonificar la respuesta sísmica de la ciudad, para ser aplicado a la actualización de la microzonificación sísmica de la ciudad, información que podrá ser utilizada para mejorar y actualizar las normas de sismo-resistencia de las edificaciones y para mejorar las hipótesis y modelos que se emplean en los escenarios de daño por terremoto.

A partir de la información procesada se compiló por cada año el catálogo de eventos registrados con los datos generales del evento sísmico, las características de la estación de registro, los principales parámetros sísmicos de la señal analizada, las historias y espectros de aceleración velocidad y desplazamiento y el espectro de Amplitudes de Fourier, esto para cada componente del registro (EO, V y NS).

De manera complementaria al catálogo de eventos, se diseñaron e implementaron fichas de registro histórico de eventos medidos en cada una de las estaciones de la RAB, con el fin de poder comparar de manera rápida todos los eventos registrados en un sitio determinado en términos de espectros de respuesta y espectros de respuesta normalizados por la aceleración máxima de la señal.

La información obtenida del monitoreo sísmico que se realiza mediante la Red de Acelerógrafos de Bogotá - RAB se publica periódicamente en la página del SIRE (www.sire.gov.co), para que esté a disposición de la comunidad y en especial de los expertos en el tema de amenaza sísmica y respuesta de sitio entre otros, de manera que se puedan adelantar investigaciones que sean útiles para posteriormente actualizar los modelos empleados en los estudios relacionados.

A la fecha se ha registrado 33 eventos sísmicos en la RAB, con valores de aceleración máxima registrada en superficie para la mayoría de eventos inferiores a 5 Gales, algunos casos con aceleraciones entre 5 y 10 Gales y en el evento del 24 de mayo de 2008 en el municipio de Quetame Cundinamarca, presentó una aceleración máxima del orden de 50 Gales (incluyendo efectos de sitio).

Con base en los resultados de las dos estaciones con Down Hole en la zona lacustre, se logra identificar que la respuesta sísmica de los depósitos de esta zona (suelos arcillosos blandos) para los registros obtenidos hasta la fecha por la RAB está en el intervalo elástico lineal, con grandes amplificaciones. En el caso de la estación en la zona aluvial se tienen niveles de amplificación bajos, debidos al comportamiento no lineal importante que presentan los tipos de suelos de esta zona (suelos limosos y arenosos duros).

De acuerdo con el mapa de iso-periodos calculado para el evento de Quetame Cundinamarca la zona de cerros tiene periodos menores a 0.4 s, la zona de piedemonte en entre 0.4 y 0.65 s, la zona lacustre entre 1.05 y 4.25 s y la zona aluvial entre 0.85 y 1.8 s.

Se logró reproducir en los sitios con Down Hole bastante bien la respuesta espectral en términos de amplitud y periodo fundamental, sin embargo en la zona lacustre se obtiene mayores amplificaciones para periodos menores a 0.7 segundos y ligeramente menores amplificaciones de los periodos mayores a 1 segundo. En la zona aluvial los resultados exageran la respuesta espectral hacia los 1.2 segundos, logrando de todos modos muy buena calibración en las demás ordenadas espectrales.

El realizar el monitoreo sísmico de la ciudad mediante una red de acelerógrafos brinda información muy valiosa, la cual es fundamental para mejorar el conocimiento del comportamiento de los suelos de la ciudad ante la ocurrencia de sismos fuertes, de no contar con la instrumentación sísmica nos sería muy difícil acércanos al conocimiento real de los depósitos y por ende de la amenaza sísmica.

6.2 RECOMENDACIONES

Con base en los análisis y resultados presentados en el presente estudio se resumen a continuación las recomendaciones para el proyecto de actualización de la microzonificación sísmica de Bogotá.

6.2.1 Generales

Realizar modelaciones de respuesta en cada una de las zonas de respuesta sísmica homogénea propuestas en la actualización de la microzonificación sísmica, aplicando las propiedades dinámicas y modelos de comportamientos empleados en la calibración de los sitios con Down Hole.

Realizar algunas modelaciones bidimensionales aplicado las propiedades dinámicas y modelos de comportamiento empleados en la calibración, para tener en cuenta los efectos topográficos, la forma del basamento rocoso y las ondas superficiales.

De acuerdo con los resultados presentados se recomienda ajustar el mapa de iso-periodos fundamentales y las zonas de respuesta sísmica homogénea propuestas en la actualización de la microzonificación sísmica, para tener en cuenta los diferentes tipos de respuestas presentadas en los piedemontes y la existencia de una zona de transición entre la zona lacustre y aluvial.

Fortalecer la instrumentación sísmica en la ciudad, principalmente en las zonas de piedemonte y cerros con estaciones de acelerógrafos con sensores Down hole en contacto con el basamento rocoso, en el sector de la autopista norte entre las calles 100 y 127, en medio de los cerros de suba y orientales, puesto que una estación en este sitio facilitaría la determinación de los mapas de iso-aceleraciones e iso-periodos y en los sectores de transición entre la zona aluvial y lacustre.

6.2.2 Señales de diseño y espectros de diseño

Al comparar las señales corregidas por confinamiento registradas en los Down Hole de CUAGR y CBOG1 con los registros en campo libre obtenidos en las estaciones en roca se observó que siempre se presentan efectos de sitio asociados a la topografía del terreno, ocasionando en los registros en roca superficial la amplificación en los periodos bajos y deamplificación en los periodos altos. Este efecto observado en las señales en roca superficial se debe revisar cuidadosamente y tener en cuenta cuando se emplean señales de diseño que correspondan a registro de roca superficial, puesto que se puede incurrir en sobrevalorar la respuesta en los periodos bajos en las zonas de piedemonte y suelos duros de poco espesor y subvalorarla en los periodos altos en las zonas de suelos blandos o duros de gran espesor.

Se recomienda como método alterno para obtener la respuesta de sitio en superficie trabajar con espectros uniformes de amenaza y señales compatibles con la amenaza sísmica de cada fuente sísmica, de manera tal que se determine para cada perfil analizado su respuesta en términos de relaciones espectrales promedio, finalmente la respuesta de sitio se obtendrá al multiplicar espectralmente el espectro uniforme de amenaza de cada fuente por la relación espectral del perfil de suelo, de esta manera se pretende "limpiar" el efecto de las señales de diseño y lograr así mejores resultados.

6.2.3 Zona de Cerros

En la zona de cerros se presenta una amplificación importante en los periodos bajos y de-amplificaciones de los periodos altos por efecto de la topografía del terreno, estos aspectos deben ser claramente diferenciados en la definición de espectros

de diseño, ya que suele confundirse esta zona con los espectros de roca en campo libre o el espectro uniforme de amenaza, los cuales no tienen en cuenta el efecto topográfico.

6.2.4 Zona de Piedemonte

Los registros de la RAB muestran la presencia de tres zonas de piedemonte con comportamientos diferentes, se recomienda subdividir el piedemonte en: zona norte que limita con la zona lacustre, zona central que domina suelos duros aluviales, y zona sur que comprende la parte apical del complejo de conos del Río Tunjuelo.

6.2.5 Zona Lacustre

En la zona lacustre se recomienda tener en cuenta que los modelos de respuesta unidimensionales sobreestiman la respuesta en los periodos bajos y subestiman en los periodos altos, por lo cual se recomienda realizar modelos bidimensionales o de manera cualitativa corregir los resultados por el efecto de la forma del basamento rocoso y las ondas superficiales que se generan.

6.2.6 Zonas Aluviales

En la zona aluvial se recomienda tener en cuenta que los modelos de respuesta unidimensionales pueden llegar sobreestimar la respuesta en los periodos bajos y en el primer modo de vibración, por lo cual se recomienda de manera cualitativa corregir los resultados.

7 BIBLIOGRAFÍA

AIS Asociación Colombiana de Ingeniería sísmica, (2007). Estudio de Amplificación Sísmica en los Sitios Establecidos por la DPAE a través de Análisis Unidimensional, Transportando en un Análisis no Lineal por etapas la Señal desde la Roca a la Superficie. Convenio interadministrativo FOPAE-AIS No 487 de 2006.

AIS300 Asociación Colombiana de Ingeniería sísmica, (1998). Normas Colombianas de diseño y construcción sismorresistentes, ley 400 de 1997, decreto 33 de 1998.

Bardet et al (2000). EERA Equivalent – Linear Earthquake site response Analysis of Layered Soil Deposits.

Bommer J. J., (2005). Seismic Hazard analysis for engineering desing and earthquake loss estimation. Congreso Chileno de Sismología e ingeniería Antisísmica.

Bommer J. J., Scott S. G. & Sarma S. K., (2000). Hazard consistent earthquake scenarios. Soil Dynamics and Earthquacke Engineering No19, 219-231.

Bommer, J.J. & Martínez-Pereira, A., (2000). The effective duration of earthquake strong-motion, Journal of Earthquake Engineering, Vol 3, No 2, 127-172.

Díaz-Parra F., (2007). Modelo de comportamiento dinámico de arcillas blandas. Tesis Maestría en Geotecnia Facultad de Ingeniería Civil, Universidad Nacional de Colombia. Bogotá.

DPAE Dirección de Prevención y atención de Emergencias (2008). Actualización de la Microzonificación Sísmica de Bogotá. Informe interno Subdirección de Investigación y Desarrollo.

Hardin, B., Drnevich, V. (1972). Shear modulus and damping in soils: design equations and curves. Journal of Soil Mechanics and Foundation Engineering Division, ASCE, VOL.98 No. SM7, pp 667-692.

Hashash Y., & Park D., (2002). Viscous damping formulation and frequency motion propagation in non-linear site response analysis. Soil Dynamic and Earthquake Engineering, 22, pp 611-624.

Hashash Y., Park D. (2001). Non-linear one-dimensional seismic ground motion propagation in the Mississipi embayment. Engineering geology. Pags185-206.

Hashash Y., Park D. (2002). Site response analysis in the Mississippi embayment. U.S. – Japan seminar on seismic disaster mitigation in urban area. Geotechnical engineering.

INGEOMINAS & UNIANDES, (1997). Microzonificación sísmica de Santa Fe de Bogotá. Publicaciones especiales INGEOMINAS. Bogotá.

INGEOMINAS, (2008). Sismo de Quetame del 24 de Mayo de 2008. Aspectos sismológicos y evaluación preliminar de Daños. Informe preliminar No 2.

Kramer S., (1996). Geotechnical Earthquake Engineering. Prentice Hall. USA.

Martínez A., Alvarado C, Rubiano D. (2002). Selección de señales de diseño consistentes con el escenario regional de amenaza sísmica: casos aplicados a Colombia. IX Congreso y IV Seminario Colombianos de Geotecnia. Medellín- Colombia.

Matasovic N., Vucetic M., (1995). Seismic response of soil deposits composed of fully-saturated clay and sand layers. Earthquake geotechnical engineering. Ishihara. Rotterdam. pp 611-616.

Park D., Hashash Y. (2005). Evaluation of seismic site effects in the Mississipi embayment. I. Estimation of dynamic properties. Soil dynamic s and earthquake engineering. Pags 133-144.

Park D., Hashash Y., (2004). Evaluation of seismic site effects in the Mississipi embayment. I Estimation of dynamic properties. Soil dynamic and earthquake engineering, pp 133-144.

SCG Sociedad Colombiana de Geotecnia, (2007). Modelo Geotécnico de La Sabana de Bogotá y Caracterización Dinámica Bidimensional de los Suelos de Bogotá. Convenio interadministrativo FOPAE-SCG No 460 de 2006.

Stokoe K., Darendeli M., Gilber R., Menq F., and Choi W., (2004). Development of a new family of normalized modulus reduction and material damping curves. PhD Dissertation, University of Texas at Austin.

UNIANDES Universidad de los Andes, (2002). Procesamiento e interpretación de la información sísmica de Bogotá.

UNIANDES Universidad de los Andes, (2006). Innovación e Investigación Tendientes a la Actualización de la Información Sísmica de la Ciudad De Bogotá. Convenio interadministrativo FOPAE-UNIANDES No 667 de 2005.

Zhang J., Andrus R. and Juang H., (2005). Normalized Shear Modulus and Material Damping Ratio Relationships. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol 131, No. 4, pp 453-464.